We have cloned and characterized the Hansenula polymorpha PER9 gene by functional complementation of the per9-1 mutant of H. polymorpha, which is defective in peroxisome biogenesis. The predicted product, Per9p, is a polypeptide of 52 kDa with sequence similarity to Pas3p, a protein involved in peroxisome biogenesis in Saccharomyces cerevisiae. In a per9 disruption strain (⌬per9), peroxisomal matrix and membrane proteins are present at wild-type levels. The matrix proteins accumulated in the cytoplasm. However, the location of the membrane proteins remained obscure; fully induced ⌬per9 cells lacked residual peroxisomal vesicles ("ghosts"). Analysis of the activity of the PER9 promoter revealed that PER9 expression was low in cells grown on glucose, but was enhanced during growth of cells on peroxisome-inducing substrates. The highest expression levels were observed in cells grown on methanol. Localization studies revealed that Per9p is an integral membrane protein of the peroxisome. Targeting studies suggested that Per9p may be sorted to the peroxisome via the endoplasmic reticulum. Overexpression of PER9 induced a significant increase in the number of peroxisomes per cell, a result that suggests that Per9p may be involved in peroxisome proliferation and/or membrane biosynthesis. When PER9 expression was placed under the control of a strongly regulatable promoter and switched off, peroxisomes were observed to disintegrate over time in a manner that suggested that Per9p may be required for maintenance of the peroxisomal membrane.Peroxisomes are cell organelles that are present in virtually all eukaryotic cells. They perform specific metabolic functions that are often related to the developmental stage and/or the organism in which they occur (1). The metabolic importance of peroxisomes in humans is demonstrated by the fact that the absence of the organelles leads to severe abnormalities, followed by an early death (e.g. Zellweger syndrome (2)). Consequently, many studies are now devoted to unravel the molecular mechanisms of peroxisome biogenesis and function. Yeasts are excellent model systems for such studies having the advantages that (i) the induction and protein composition of peroxisomes can readily be manipulated by varying growth conditions and (ii) in the absence of peroxisomes, yeasts are viable (3, 4). Hence, peroxisome-deficient mutants have been isolated from different yeast species (4), and the corresponding genes are being cloned and characterized.In yeast, peroxisomes normally develop by growth and fission from pre-existing ones. Peroxisomal matrix proteins are nuclear-encoded, synthesized in the cytoplasm, and directed to the organelle by topogenic signals (PTSs).1 Two PTSs have been identified and are located either at the extreme C terminus (PTS1) or the N terminus of the protein (PTS2) (4). Our knowledge on the sorting of peroxisomal membrane proteins is still limited, and consensus topogenic sequences have yet to be identified (5).In our laboratory, we use the methylotrophic yeast Hansenula po...
In the course of our studies on the molecular mechanisms involved in peroxisome biogenesis, we have isolated several mutants of the methylotrophic yeast Hansenula polymorpha impaired in the import of peroxisomal matrix proteins. These mutants are characterized by the presence of few small intact peroxisomes, while the bulk of the peroxisomal matrix protein is not imported and resides in the cytosol (Pim-phenotype). Genetic analysis of back-crossed mutants revealed five different complementation groups, which were designated PERI-PER5. Mapping studies to determine the linkage relationships indicated that the observed Pim-phenotypes were determined by single recessive nuclear mutations.The different mutants had comparable phenotypes: (i) they were impaired to utilize methanol as the sole source of carbon and energy but grew well on various other compounds, including nitrogen sources, the metabolism of which is known to be mediated by peroxisome-borne enzymes in wild-type cells; (ii) all peroxisomal enzymes tested were induced, assembled and activated as in wild-type cells although their activities varied between the different representative mutants; (iii) all peroxisomal proteins, whether constitutive or inducible, were found both in the cytosol and in the small peroxisomes. These results suggest that a general, major import mechanism is affected in all mutants.
In the methylotrophic yeast Hansenula polymorpha non-selective autophagy, induced by nitrogen starvation, results in the turnover of cytoplasmic components, including peroxisomes. We show that the uptake of these components occurs by invagination of the vacuolar membrane without their prior sequestration and thus differs from the mechanism described for bakers yeast. A selective mode of autophagy in H. polymorpha, namely glucose-induced peroxisome degradation, involves sequestration of individual peroxisomes tagged for degradation by membrane layers that subsequently fuse with the vacuole where the organelle is digested. H. polymorpha pdd mutants are blocked in selective peroxisome degradation. We observed that pdd1-201 is also impaired in non-selective autophagy, whereas this process still normally functions in pdd2-4. These findings suggest that mechanistically distinct processes as selective and non-selective autophagy involve common but also unique genes.
We have studied the expression of alcohol oxidase (AO) in a peroxisome‐deficient mutant strain of Hansenula polymorpha. High levels of octameric, active AO (up to 3·0 U/mg protein) were detected in cells grown at low dilution rates in a glucose‐limited chemostat in the presence of choline as the sole nitrogen source. Monomeric or other intermediate forms of AO were not detected in the mutant strain. This indicated that assembly of the protein into active octameric molecules in the cytosol was as efficient as in wild‐type cells where this process is confined to the peroxisomal matrix. At relatively low rates of expression (less than 1 U/mg protein) AO was localized throughout the cytosol and, surprisingly, was also present inside the nucleus. However, at enhanced levels large crystalloids were formed. Generally one crystalloid was observed per cell, whereas smaller ones were occasionally found in developing buds. Also large crystalloids have been observed inside the nucleus. These crystalloids were not surrounded by a membrane. Based on the morphology of the molecules that constituted these crystalloids and the results of (immuno)cytochemical experiments we conclude that the crystalloids are composed of octameric AO molecules, arranged in a regular lattice, identical to the 3‐dimensional architecture previously described for the crystalline matrix of peroxisomes in methanol‐grown wild type cells of H. polymorpha. Attempts to purify the crystalloids by conventional fractionation methods failed, due to their apparent fragility; however, (immuno)cytochemical experiments revealed that catalase and dihydroxyacetone synthase were also associated with these structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.