Accurately predicting precipitation trends is vital in the economic development of a country. This research investigated precipitation variability across 15 stations in the Swat River basin, Pakistan, over a 51-year study period (1961–2011). Nonparametric Mann-Kendall (MK) and Spearman’s rho (SR) statistical tests were used to detect trends in monthly, seasonal, and annual precipitation, and the trend-free prewhitening approach was applied to eliminate serial correlation in the precipitation time series. The results highlighted a mix of positive (increasing) and negative (decreasing) trends in monthly, seasonal, and annual precipitation. One station in particular, the Saidu Sharif station, showed the maximum number of significant monthly precipitation events, followed by Abazai, Khairabad, and Malakand. On the seasonal time scale, precipitation trends changed from the summer to the autumn season. The Saidu Sharif station revealed the highest positive trend (7.48 mm/year) in annual precipitation. In the entire Swat River basin, statistically insignificant trends were found in the subbasins for the annual precipitation series; however, the Lower Swat subbasin showed the maximum quantitative increase in the precipitation at a rate of 2.18 mm/year. The performance of the MK and SR tests was consistent at the verified significance level.
This study presents an assessment of the version-6 (V06) of the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) product from June 2014 to December 2017 over different hydro-climatic regimes in the Tianshan Mountains. The performance of IMERG-V06 was compared with IMERG-V05 and the Tropical Rainfall Measuring Mission (TRMM) 3B42V7 precipitation products. The precipitation products were assessed against gauge-based daily and monthly precipitation observations over the entire spatial domain and five hydro-climatologically distinct sub-regions. Results showed that: (1) The spatiotemporal variability of average daily precipitation over the study domain was well represented by all products. (2) All products showed better correlations with the monthly gauge-based observations than the daily data. Compared to 3B42V7, both IMERG products presented a better agreement with gauge-based observations. (3) The estimation skills of all precipitation products showed significant spatial variations. Overall performance of all precipitation products was better in the Eastern region compared to the Middle and Western regions. (4) Satellite products were able to detect tiny precipitation events, but they were uncertain in capturing light and moderate precipitation events. (5) No significant improvements in the precipitation estimation skill of IMERG-V06 were found as compared to IMERG-V05. We deduce that the IMERG-V06 precipitation detection capability could not outperform the efficiency of IMERG-V05. This comparative evaluation of the research products of Global Precipitation Measurement (GPM) and TRMM products in the Tianshan Mountains is useful for data users and algorithm developers.
This paper investigates the spatiotemporal variability in hydrometeorological time-series to evaluate the current and future scenarios of water resources availability from upper Indus basin (UIB). Mann–Kendall and Sen’s slope estimator tests were used to analyze the variability in the temperature, precipitation, and streamflow time-series data at 27 meteorological stations and 34 hydrological stations for the period of 1963 to 2014. The time-series data of entire study period were divided into two equal subseries of 26 years each (1963–1988 and 1989–2014) to assess the overlapping aspect of climate change acceleration over UIB. The results showed a warming pattern at low altitude stations, while a cooling tendency was detected at high-altitude stations. An increase in streamflow was detected during winter and spring seasons at all hydrological stations, whereas the streamflow in summer and autumn seasons exhibited decreasing trends. The annual precipitation showed a significant decreasing trend at ten stations, while a significant increasing trend was observed at Kohat station during second subseries of the study period. The most significant winter drying trends were observed at Gupis, Chitral, Garidopatta, and Naran stations of magnitude of 47%, 13%, 25%, and 18%, respectively, during the second subseries. The annual runoff exhibited significant deceasing trends over Jhelum subbasin at Azad Pattan, Chinari, Domel Kohala, Muzaffarabad, and Palote, while within Indus basin at Chahan, Gurriala, Khairabad, Karora, and Kalam in the second time-series. It is believed that the results of this study will be helpful for the decision-makers to develop strategies for planning and development of future water resources projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.