Rubber (Hevea brasiliensis) is a perennial plant crop grown in many parts of Africa, South East Asia, and South America, especially within the hot and humid climatic regions. Rubber seed, either as feed or food, is a useful raw material to produce edible oil and protein. Despite the huge quantity of rubber seeds produced in Nigeria and its potential as a protein source, rubber seeds still appear neglected and under-utilised as feed/food given its perception as inedible and toxic due to the high concentration of cyanogenic glycoside. Therefore, the quest for effective processing technique(s) that would enhance its food use application is very fitting. This current study was directed to determine the changes in anti-nutrient, phytochemical, and micronutrient contents of different processed rubber seed meals. Specifically, the rubber seeds underwent processing, which employed boiling and the combined action of boiling and fermentation methods that brought about three seed meal flour groups, i.e., raw (RRSM), boiled (BRSM), and fermented (FRSM) seed meals. These were subsequently analysed for anti-nutrient/phytochemical (oxalate, phytate, tannin, phenols, saponin, hydrogen cyanide (HCN), alkaloids, flavonoids, and trypsin inhibitors), and micronutrient (which involved minerals (magnesium, phosphorus, calcium, iron, zinc, potassium, sodium, manganese, lead, and selenium) and vitamin (vitamin B1, B2, B3, C, E, and beta carotene)) contents. The results showed that the processing methods used to achieve the RRSM, BRSM, and FRSM, reduced the anti-nutrients (phytate, tannin, and oxalate) below the acceptable limits, and the HCN below the toxic levels. Importantly, the processing methods herein have not yet succeeded in removing HCN in the (processed) rubber seed meals, but can be seen to be heading toward the right direction. The FRSM obtained significantly lower (p < 0.05) anti-nutrient/phytochemical, but significantly higher (p < 0.05) mineral contents, compared with the other groups (RRSM and BRSM), except for flavonoids that obtained a 30% increase over the BRSM. Some mineral and vitamin contents could be lost in the BRSM compared to the others (RRSM and FRSM) in this study. Additionally, the FRSM obtained higher vitamin contents, after those of RRSM. Overall, the combined action of boiling and fermentation should be recommended for the proper utilisation of rubber seed as food/feed.
Aim: To create variety of flours through food product development by checking the proximate and functional properties of flours from brown variety of African yam bean (Sphenostylis stenocarpa) seeds. Study Design: This study was made to fit into a one way Analysis of Variance. Place and Duration of Study: The research was carried out at the Department of Food Science and Technology laboratory, Federal University of Technology, Owerri, Nigeria, between July 2017 and September 2018. Methodology: Brown coloured variety of African yam bean seeds were sorted, soaked, dehulled and milled to obtain full fat flour. The full fat flour was further processed to obtain defatted flour, protein isolate and protein concentrate. The different flours were analysed to determine their proximate and functional properties. Results: From the results of the proximate composition, it showed that the protein isolate value 89.1±0.23% was higher than the protein composition of the full fat, defatted and protein concentrates which has 21.8±0.16%, 23.1±0.06% and 61.7±0.21% composition respectively. There were no significant difference (p<0.05) between the protein concentrate, protein isolate, full fat flour and defatted flour. The functional properties revealed high bulk density of (0.50± 0.01) for the defatted flour more than the full fat flour (0.35± 0.10) while the emulsion capacity of the protein concentrate and protein isolate flour was found to be (30.7±0.19%) and (35.3± 0.16%) respectively. Conclusion: The proximate and functional results obtained indicate that the starches from African yam bean will have useful technological properties for many applications both in food industries and in the production industries such as in paper and textile industries. It can also be said that African yam bean represents a source of alternative protein supplement and its protein isolates possess certain characteristics that will aid in protein enrichment for some food products.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.