Many attempts have been made in the recent past to model and forecast streamflow using various techniques with the use of time series techniques proving to be the most common. Time series analysis plays an important role in hydrological research. Traditionally, the class of autoregressive moving average techniques models has been the statistical method most widely used for modelling water discharge, but it has been shown to be deficient in representing nonlinear dynamics inherent in the transformation of runoff data. In contrast, the relatively newly improved and efficient soft computing technique artificial neural networks has the capability to approximate virtually any continuous function up to an arbitrary degree of accuracy, which is not otherwise true of other conventional hydrological techniques. This technique corresponds to human neurological system, which consists of a series of basic computing elements called neurons, which are interconnected together to form networks. The aim of the study is to compare the artificial neural network and autoregressive integrated moving average to model River Opeki discharge (1982–2010) and to use the best predictor to forecast the discharge of the river from 2010 to 2020. The performance of the two models was subjected to statistical test based on correlation coefficient (r) and the root‐mean‐square error. The result showed that autoregressive integrated moving average performs better considering the level of root‐mean‐square error and higher correlation coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.