We studied the effects of antisense oligonucleotides (AS oligos) with a novel structure. The AS oligos were covalently closed to avoid exonuclease activities by enzymatic ligation of two identical molecules. The AS oligos of a ribbon type (RiAS oligos) consist of two loops containing multiple antisense sequences and a stem connecting the two loops. Three antisense sequences targeting different binding sites were placed in a loop that was designed to form a minimal secondary structure by itself. RiAS oligos were found to be stable because they largely preserved their structural integrity after 24 h incubation in the presence of either exonuclease III or serums. When a human promyelocytic cell line, HL-60, was treated with RiAS oligos to c-myb, c-myb expression was effectively ablated. Cell growth was inhibited by >90% determined by both the 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and [ 3 H]thymidine incorporation. Further, when the leukemic cell line K562 was treated with c-myb RiAS oligos, colony formation on soft agarose was reduced by 92 ؎ 2%. These results suggest that RiAS oligos may be employed for developing molecular antisense drugs as well as for the functional study of a gene.
Systematic secondary structure simulation of a target mRNA sequence is shown to be effective for locating a good anti-sense target site. Multiple selected anti-sense sequences were placed in a single molecule. The anti-sense oligonucleotide (oligo) was covalently closed to avoid exonuclease activities and was designated CMAS (covalently closed multiple anti-sense)-oligo. CMAS-oligo was found to be stable, largely preserving its structural integrity after 24 h of incubation in the presence of either exonuclease III or serum. When human c-myb mRNA was targeted by the c-myb CMAS-oligo, expression of the gene was completely abolished. Further, tumour cell growth was inhibited by 82+/-3% as determined by an MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and by 90+/-1% by [(3)H]thymidine incorporation. When a leukaemic cell line K562 was treated with CMAS-oligo, colony formation on soft agarose was also decreased by 93%. In contrast, treatment with a scrambled control oligo did not significantly inhibit leukaemic cell growth. These results suggest that a rational target site search is possible for an anti-sense oligo and that CMAS-oligo can be employed as an effective anti-sense agent with enhanced stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.