Dislocation-free vertical GaN pillars in nanoscale were grown on Si (111) surface through self-assembly by molecular-beam epitaxy. No extra catalytic or nanostructural assistance has been employed. These nanorods have a lateral dimension from ≲10 nm to ∼800 nm and a height of ≲50 nm to ≳3 μm protruding above the film, depending on the growth parameters. The top view of the nanorods has a hexagonal shape from scanning electron microscopy. Transmission electron microscopy shows that the nanorods are hexagonal, single crystal GaN along the c-axis. An extra peak at 363 nm originated from nanorods was observed in photoluminescence spectra at 66 K, which is ascribed to the surface states according to the results of surface passivation. Micro-Raman spectroscopy on a single nanorod reveals E1 and E2 modes at 559.0 and 567.4 cm−1, respectively. Large strain was observed in both the transmission electron micrograph and the Raman shift. A possible growth mechanism is discussed.
In this Reply, we reexamine the beating Shubnikov-de Haas oscillations by a nonlinear curve-fitting technique. The results do not support the arguments of Tang et al. ͓Phys. Rev. B 73, 037301 ͑2006͔͒, and it is unlikely that the beating Shubnikov-de Haas oscillations we observed in Al x Ga 1−x N / GaN heterostructures originate from magnetointersubband scattering.
The spin-splitting energies of the conduction band for ideal wurtzite materials are calculated within the nearest-neighbor tight-binding method. It is found that ideal wurtzite bulk inversion asymmetry yields not only a spin-degenerate line ͑along the k z axis͒ but also a minimum-spin-splitting surface, which can be regarded as a spin-degenerate surface in the form of bk z 2 − k ʈ 2 =0 ͑b Ϸ 4͒ near the ⌫ point. This phenomenon is referred to as the Dresselhaus effect ͑defined as the cubic-ink term͒ in bulk wurtzite materials because it generates a term ␥ wz ͑bk z 2 − k ʈ 2 ͒͑ x k y − y k x ͒ in the two-band k • p Hamiltonian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.