The purpose of this paper is to propose an experimental design methodology for global active noise control in an enclosed space. We aim to control the noise caused by an internal noise source. Since each enclosed space has different acoustic characteristics, it is difficult to design different controllers suitable for each enclosed space. So, we decided to design a controller that could be used universally. The basic concept is the collocation of noise source and control speakers to generate a sound field opposite in phase to the noise source in a free field. For implementation of the proposed method, we propose a configuration method of control speakers and error microphones, and an active noise control algorithm. Also, to confirm the applicability of the proposed method, we design a controller in an anechoic chamber, which represents a free field condition, and perform active noise control in other enclosed spaces with the controller designed for the anechoic chamber. The experimental results show that the solution calculated in the free field condition can be used in other enclosed spaces without any modifications.
Conventional active noise control (ANC) systems in enclosed spaces are not easy to implement experimentally because they require a large number of microphones to measure sound pressure in global areas. Even if such systems are possible, if there are any changes in the locations of noise sources or surrounding objects, or if ANC system moves to another enclosed space, an expensive and time-consuming experimental calibration is again required. Implementation of global ANC in enclosed spaces is thus difficult. Therefore, we designed a global ANC system that can be used in various acoustic environments. The main idea involves suboptimal open-loop controller design in the free field. By using an open-loop controller, a controller calibrated once can be used in various acoustic environments. A controller designed in the free field derive a suboptimal solution without bias toward a specific acoustic environment. For controller design in the free field, we propose an experimental calibration approach in which the arrangement and the number of control speakers and microphones are determined by the frequency range and radiation pattern of the noise source. We conducted simulations and experiments to show that the designed controller in the free field is sufficiently effective in other enclosed spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.