The use of methyl methacrylate butadiene styrene (MBS) as a compatibilizer for natural rubber (NR) and nitrile butadiene rubber (NBR) blends has been investigated. Research on the cure characteristics, mechanical properties, swelling, and morphology (SEM) has been conducted to determine the compatibility of NR/NBR blends in the presence of MBS. Based on the cure characteristics, it is indicated that the presence of MBS was affected significantly by maximum and minimum torque. The addition of MBS improved the mechanical properties and the oil resistance of NR/NBR blends due to the compatibility and better interfacial adhesion between rubber phases. The experiment showed that MBS loading by 2.5 phr was the optimum level for NR/NBR blends.
Reologi, sifat aging, termal, dan swelling dari campuran EPDM/NR dengan bahan pengisi carbon black N220 Rheology, aging, thermal and swelling properties of carbon black N220-filled EPDM/NR
The blending of ethylene propylene diene monomer/natural rubber (EPDM/NR) needs much attention because of their incompatibility. In this work, the influence of accelerator type on cure characteristics and mechanical properties of 60/40 EPDM/NR blend was investigated. The compounds were prepared by controlling the migration of curative and using maleic anhydride as the compatibilizer. Three types of accelerators were studied: 2,2-dithiobis(benzothiazole) (MBTS), the combination of MBTS and tetramethyl thiuram disulfide (TMTD), and n-tert-butyl-2-benzothiazolesulfenamide (TBBS). The cure characteristic, mechanical properties, and morphology of the composites had been investigated by rheometer, tensile testing machine, hardness durometer and scanning electron microscope (SEM). Blending of EPDM/NR with various accelerator gave different composite characteristics. MBTS, used in single or binary accelerator system, provided good mechanical properties. TBBS gave the longest scorch time, the lowest crosslink density and poor mechanical properties, except tear strength. Binary accelerator, MBTS/TMTD, provided the lowest processing time and the highest cure rate, but not significantly different from MBTS. Binary accelerator gives the best aging resistance and compatibility blend. These results correspond well with SEM micrograph. From the study, it can be concluded that binary accelerator system was the proper accelerator for EPDM/NR blend.
Recently, much attention has been focused on research to replace petroleum-based plasticizers, with biodegradable materials, such as biopolymer which offers competitive mechanical properties. In this study, castor oil was modified with maleic anhydride (MAH) to produce bioplasticizer named maleated anhydride castor oil (MACO), and used in nitrile butadiene rubber (NBR)/poly vinyl chloride (PVC) blend. The effect of MACO on its cure characteristics and mechanical properties of NBR/PVC blend has been determined. The reactions were carried out at different castor oil (CO)/xylene ratios, i.e. 1:0 and 1:1 by weight, and fixed CO/MAH ratio, 1:3 by mole. DOP, CO, and MACO were added into each NBR/PVC blend according to the formula. It was found that the viscosity and safe process level of NBR/PVC blend is similar from all plasticizer, however, MACO (1:0) showed the highest cure rate index (CRI). MACO-based plasticizer gave a higher value of the mechanical properties of the NBR/PVC blend as compared to DOP based plasticizer. MACO (1:1) based plasticizer showed a rather significance performance compared to another type of plasticizers both before and after aging. The value of hardness, elongation at break, tensile strength, and tear strength were 96 Shore A, 155.91 %, 19.15 MPa, and 74.47 MPa, respectively. From this result, NBR/PVC blends based on MACO plasticizer can potentially replace the DOP, and therefore, making the rubber blends eco-friendly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.