Anti-inflammatory activity study involves developing a model that mimics, or provokes the production or release of, the biochemical mediators of inflammation, and monitoring the response of these biochemicals to the test drugs. This report constitutes an updated review of the in vitro and in vivo study models for assessing anti-inflammatory activity in plant extracts and synthetic drugs. The materials, instrumentation, and methods involved, as well as the mechanism of anti-inflammatory activity tested in each model, are extensively described. The merits and limitations of each method have also been discussed. A comparative assessment of the in vivo animal models vis-à-vis, the in vitro enzyme models have been made to assist scientists and researchers in the choice of assay method in terms of sensitivity, reliability, duration of test, ethical, and cost considerations.
Background. The stem bark decoction of Stemonocoleus micranthus Harms (Fabaceae) is most widely used traditionally as a remedy for various diseases such as malaria and boil. In this study, the anti-inflammatory and immunomodulatory activities of the methanol-dichloromethane extract (MDE) from the stem bark of the plant in rodents were evaluated. Methods. The carrageenan-induced rat paw oedema, cotton pellet-induced granuloma in rat, and xylene-induced ear oedema in mice were used to study the anti-inflammatory activity of methanol-dichloromethane extract of Stemonocoleus micranthus (MDESm) (100, 200, and 400 mg/kg). The effects of MDESm (100, 200, and 400 mg/kg) on cyclophosphamide-induced immunosuppression, neutrophil adhesion, carbon clearance, and haematological and biochemical parameters were carried out to study its immunomodulatory activity in mice. Result. MDESm (100 mg/kg, p.o.) significantly (p<0.05) inhibited carrageenan-induced oedema by 57.1% at 5th h posttreatment compared with control. At 100 mg/kg, p.o., MDESm significantly (p<0.05) reduced cotton pellet-induced granuloma by 39.28% and nonsignificantly reduced xylene-induced ear oedema by 34.1%. Treatment with MDESm (100 and 400 mg/kg) nonsignificantly abolished the neutropenia caused by cyclophosphamide with a percentage neutrophil reduction of 0 and −14.86%, respectively, while MDESm (200 mg/kg) and levamisole (50 mg/kg) had a nonsignificant reduction in neutrophil count (10.16 and 31.40%), respectively, all compared to the distilled water-treated group with a neutrophil count of −9.82%. MDESm at doses of 100 and 200 mg/kg increased phagocytic index by 0.0447 ± 0.00762 and 0.0466 ± 0.00703, respectively, although not significantly when compared to the control group with a value of 0.0226 ± 0.02117. There was a decrease in WBC and lymphocyte counts in MDESm- (200 mg/kg) treated group, suggesting immunosuppressive potential at this dose. MDESm caused a dose-dependent decrease in ALT and core liver enzymes, suggesting a hepatoprotective effect. The acute toxicity test revealed that MDESm is safe in mice with an oral lethal dose (LD50) of >5 g/kg. Conclusion. The methanol-dichloromethane extract of Stemonocoleus micranthus Harms possesses mild anti-inflammatory and immunomodulatory activities which may be more pronounced upon fractionation and purification. Therefore, more investigations are needed to explore these activities further.
Background The search for pharmacologically effective agents among molecules bearing multiple functionalities is commonly practiced. In continuation of the search for new anti-malarial agents, new pyrazole-hydrazine coupled Schiff-base derivatives previously synthesized were screened for anti-malarial property. Methods Here, in vivo prophylactic and curative activities of the compounds were assessed while their binding affinity for falcipain-2, a crucial enzyme in Plasmodium survival, was done using computational techniques. Results The two derivatives (BepINH and BepBeH) respectively led to a significant (p < 0.05) reduction in parasitaemia count (0.76 ± 1.11 and 0.79 ± 1.19) at day 3 post-treatment relative to the negative control (16.37 ± 1.25). For the prophylactic study, it was observed that the highest parasitaemia suppression level of 95.35% and 95.17% for BepINH and BepBeH at 15 mg/kg was slightly comparable to that obtained for ACT-Lonart (99.38%). In addition, their haematological profiles indicate that they are potentially beneficial in suppressing haemolytic damage to RBC, thereby protecting the body against infection-induced anaemia. Docking calculations on the derivatives toward the Plasmodium falciparum falcipain-2 revealed that they favourably interacted with a binding affinity higher than that of a known cocrystallized inhibitor. Conclusion This study confirms the relevance of multi-functional molecules in the search for new and effective anti-plasmodial agent and lay the foundation for further development of these compound series to potent anti-plasmodial agent that interacts with falcipain-2.
Secondary metabolites from marine sources have a wide range of biological activity. Marine natural products are promising candidates for lead pharmacological compounds to treat diseases that plague humans, including cancer. Cancer is a life-threatening disorder that has been difficult to overcome. It is a long-term illness that affects both young and old people. In recent years, significant attempts have been made to identify new anticancer drugs, as the existing drugs have been useless due to resistance of the malignant cells. Natural products derived from marine sources have been tested for their anticancer activity using a variety of cancer cell lines derived from humans and other sources, some of which have already been approved for clinical use, while some others are still being tested. These compounds can assault cancer cells via a variety of mechanisms, but certain cancer cells are resistant to them. As a result, the goal of this review was to look into the anticancer potential of marine natural products or their derivatives that were isolated from January 2019 to March 2020, in cancer cell lines, with a focus on the class and type of isolated compounds, source and location of isolation, cancer cell line type, and potency (IC50 values) of the isolated compounds that could be a guide for drug development.
Diarrhoea is characterized with frequent passage of liquid faeces and it involves both an increase in the motility of the gastrointestinal tract, along with increased secretion and decreased absorption of fluid, and thus a loss of electrolytes (particularly sodium) and water. 1 It is one of the main causes of infant mortality in developing countries, 2 causing about 5 to 8 million deaths a year, mainly among children under five years of age. 3 The use of antimotility agents, antibiotics, electrolyte and fluid replacement therapies are currently the mainstay in acute diarrhea management. Gastric ulcer is a common ailment throughout the world, in which the gastric mucosa becomes damaged and perforations lead to bleeding which affects about 10% of the world population. 4 Some endogenous and exogenous factors, including acid, pepsin, stress, and noxious agents such as non-steroidal anti-inflammatory drugs (NSAIDs), Helicobacter pylori infection, smoking, and alcohol consumption are known to cause or aggravate gastric ulcer. 5 Despite advances, adequate remedy for the gastrointestinal disorders
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.