The use of an UBCG increased cardiovascular and thermoregulatory strain during cycling in a hot environment and did not aid during recovery.
PurposeThe aim of the present study was to determine the effects of an upper body compression garment (UBCG) on thermoregulatory responses during cycling in a controlled laboratory thermoneutral environment (~23°C). A secondary aim was to determine the cardiovascular and perceptual responses when wearing the garment.MethodsSixteen untrained participants (age: 21.3 ± 5.7 years; peak oxygen consumption (VO2peak): 50.88 ± 8.00 mL/min/kg; mean ± SD) performed 2 cycling trials in a thermoneutral environment (~23°C) wearing either UBCG or control (Con) garment. Testing consisted of a 5-min rest on a cycle ergometer, followed by 4 bouts of cycling for 14-min at ~50%VO2peak, with 1-min rest between each bout. At the end of these bouts there was 10-min of passive recovery. During the entire protocol rectal temperature (Trec), skin temperature (Tskin), mean body temperature (Tbody), and heat storage (HS) were measured. Heart rate (HR), VO2, pH, hematocrit (Hct), plasma electrolytes, weight loss (Wloss), and perceptual responses were also measured.ResultsThere were no significant differences between garments for Tskin, HS, HR, VO2, pH, Hct, plasma electrolyte concentration, Wloss, and perceptual responses during the trial. Trec did not differ between garment conditions during rest, exercise, or recovery although a greater reduction in Trec wearing UBCG (p = 0.01) was observed during recovery. Lower Tbody during recovery was found when wearing UBCG (36.82°C ± 0.30°C vs. 36.99°C ± 0.24°C).ConclusionWearing a UBCG did not benefit thermoregulatory, cardiovascular, and perceptual responses during exercise although it was found to lower Tbody during recovery, which suggests that it could be used as a recovery tool after exercise.
The efficacy of the use of an upper body compression garment (UBCG) as an ergogenic aid to reduce thermoregulatory strain in older adults remains unknown. The aim of this study was to evaluate the effects of UBCG on thermoregulatory, cardiorespiratory, and perceptual responses during cycling in a temperate environment (~25 °C, 66% rh) in trained older adults. Twelve cyclists aged 66 ± 2 years performed an intermittent 1-hr cycling trial at 50% of the peak power output followed by 10 min of passive recovery. Participants were provided with either commercially available UBCG or a control garment in a randomized order. UBCG increased thermoregulatory strain during exercise, as indicated by a significantly higher core temperature (38.1 ± 0.3 °C vs. 37.9 ± 0.3 °C; p = .04), body temperature (36.9 ± 0.2 °C vs. 36.7 ± 0.2 °C; p = .01), and thermal sensation (8.0 ± 0.4 vs. 7.5 ± 1.0; p = .02). These results suggest that the use of UBCG in trained older adults does not reduce the thermoregulatory strain during moderate exercise.
Leoz-Abaurrea, I, Santos-Concejero, J, Grobler, L, Engelbrecht, L, and Aguado-Jiménez, R. Running performance while wearing a heat dissipating compression garment in male recreational runners. J Strength Cond Res 30(12): 3367-3372, 2016-The aim of this study was to investigate the effects of a heat dissipating compression garment (CG) during a running performance test. Ten male recreational runners (mean ± SD: age 23 ± 3 years; V[Combining Dot Above]O2max 55.8 ± 4.8 ml·kg·min) completed 2 identical sessions wearing either CG or conventional t-shirt (CON). Each trial included a 45-minute run at 60% of the peak treadmill speed (PTS) followed by a time to exhaustion (TTE) run at 80% of the PTS and a 10-minute recovery period. During the tests, thermoregulatory and cardiovascular responses were monitored. Participants wearing the CG displayed an impaired running performance (508 ± 281 vs. 580 ± 314 seconds, p = 0.046; effect size [ES] = 0.24). In addition, a higher respiratory exchange ratio (1.06 ± 0.04 vs. 1.02 ± 0.07, p = 0.01; ES = 0.70) was observed at TTE when wearing the CG in comparison to CON. Changes in core temperature did not differ between garments after the 45-minute run (p = 0.96; ES = 0.03) or TTE (1.97 ± 0.32 vs. 1.98 ± 0.38° C; p = 0.93; ES = 0.02) for CG and CON, respectively. During recovery, significantly higher heart rate and blood lactate values were observed when wearing CG (p ≤ 0.05). These findings suggest that the use of a heat dissipating CG may not improve running performance in male recreational runners during a running performance test to exhaustion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.