With the rapid development of technology in all fields, from the government, education, agriculture and especially in the health sector, technology can provide fast and accurate information for health teams, doctors, nurses and even patients themselves to make it easier to control their own health. The purpose of this study was to apply the K-Means method to classify ARI diseases and to obtain accurate and fast accuracy in classifying symptoms of ARI using the K-Means method. The method used is data mining techniques using the K-Means algorithm. This process resulted in 3 clusters, namely cluster C1 (Regular ISPA) with 81 members, cluster C2 (moderate ISPA) with 103 members, and cluster C3 (Heavy ISPA) with 66 members. It can be seen that the largest number of ARI patients are patients with mild ARI symptoms. Based on the results of the percentage analysis for each cluster, the first cluster has a percentage of 35% of data, the second cluster is 45% of data and the third cluster is 20% of data. Testing using the DBI (Davies Bouldin Index) validation obtained values for each cluster. Testing cluster 1 produces DBI value -0.244, cluster 2 DBI value -0.250, cluster 3 DBI value -0.239. Because the DBI value of cluster 3 is smaller, the cluster can be called optimal.
I. PENDAHULUAN emanfaatan ilmu pengetahuan dan teknologi yang terus berkembang dengan cepat dan pesat harus diimbangi dengan kemampuan untuk beradaptasi dalam penggunaannya. Salah satu bidang tersebut adalah sistem pendukung keputusan (Decision Support System) yang semakin luas penggunaanya dalam pengambilan keputusan.Sistem pendukung keputusan didefinisikan sebagai sebuah sistem yang menggabungkan model dan data untuk menyelesaikan masalah semi terstruktur dan tidak terstruktur dengan melibatkan pengguna sistem pendukung keputusan bisa dilihat sebagai sebuah pencapaian [1]. Sistem pendukung keputusan adalah suatu sistem berbasis komputer yang menghasilkan berbagai alternatif keputusan untuk membantu manajemen dalam menangani berbagai permasalahan yang terstruktur ataupun tidak terstruktur dengan menggunakan data dan model [2]. Salah satu metode dalam sistem pendukung keputusan adalah Simple Additive Weighting (SAW). SAW adalah metode jumlah tertimbang. Konsep dasar dari SAW adalah untuk menentukan kinerja keseluruhan tertimbang dari setiap alternatif untuk semua kriteria. SAW membutuhkan normalisasi matriks keputusan (X) ke skala perbandingan dari semua klasifikasi alternatif saat ini [3]- [5].Suatu Lembaga atau Yayasan yang bekerja dibidang pendidikan tentunya harus memiliki Sumber P
In the era of progressively more competitive industrial competition, especially in the manufacturing world, it is always required to develop the quality or quality of products and productivity. Each company is compete to win market share. One of the strategies carried out by the company is improving the quality of products and the production process conducted by the company. In the industrial world, product quality and productivity are the keys for success of the production process. Therefore, the purpose of this study is to analyze data for defective products at PT Mane Indonesia with the Particle Swarm Optimization (PSO) and Naïve Bayes Classifier method. The accuracy results using the Naïve Bayes algorithm get a value of 84.38% and an AUC value of 0.953. The results of the PSO-based Naïve Bayes algorithm get a value of 88.62% and AUC value of 0.945. Based on the research which has been performed by using Naïve Bayes based on PSO, it developed a contribution rate of 5,02% in predicting the defected products.
Penjadwalan merupakan masalah kombinasional yang memiliki batasan-batasan kondisi yang harus dipenuhi, oleh karena itu hal ini menjadi pekerjaan rumit yang harus diselesaikan dengan cepat, tepat dan akurat. Ketersediaan ruangan, kapasitas kelas, ketersediaan dosen dan jumlah mahasiswa merupakan batasan mutlak yang harus dipenuhi dalam menyusun jadwal. Proses penjadwalan dengan batasan-batasan tersebut membutuhkan ketelitian agar mendapatkan jadwal yang sesuai, namun prosesnya memakan waktu dan terkadang masih terjadi bentrok antar jadwal. Untuk mengatasi masalah tersebut, diperlukan suatu metode untuk melakukan optimasi proses penjadwalan. Pengoptimalan masalah tersebut biasanya melibatkan suatu algoritma. Algoritma yang telah banyak digunakan dalam masalah penjadwalan adalah Algoritma Genetika. Algoritma ini berhasil mengungguli Algoritma yang lain dengan fitness rata-rata paling tinggi. Pada penelitian ini, telah dibuat aplikasi penjadwalan mata kuliah menggunakan Algoritma Genetika untuk menyelesaikan masalah tersebut.
Herpes Zoster is a skin disease that is very difficult to treat and everyone can certainly experience it, the characteristics of this disease are characterized by unilateral vesicles in groups with pain characterized by radicular around the dermatome. This study aims to establish a Web-based Certainty factor method as a tool to diagnose skin diseases. With this application, it doesn’t need long time to find out what type of herpes zoster is suffering. To use this application is that the patient answers the questions which are provided by the system, then the system will process all the patient answers using the certainty factor method, after that, the system will produce output as the results of the diagnosis of the type of shingles. The system built can help patients to know the type of disease that is being suffered by the patients and in accordance with expert analysis of skin diseases.Keywords:Certainty factor, Herpes zoster, web.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.