Epidermal growth factor (EGF)-like factors [amphiregulin (AREG), betacellulin, and epiregulin] are induced by LH and activate the EGF receptor (ERBB1)/ERK1/2 pathway in granulosa cells and cumulus cells of preovulatory follicles to impact ovulation. However, the expression and roles of other ERBB family members and their ligands have not been explored in detail. Herein, we document that two transcripts of the neuregulin (Nrg1) gene are expressed in granulosa cells, and that the type III Nrg1 is induced during ovulation in an ERK1/2 and C/EBPβ-dependent manner. Western blotting shows that intact (75 kDa) and secreted (45 kDa) forms of neuregulin 1 (NRG1) are present in the ovary. NRG1 likely binds to ERBB3/ERBB2 complexes that are expressed in granulosa cells and cumulus cells. In cultured granulosa cells, NRG1 selectively stimulates the phosphorylation of AKT/PKB compared to ERK1/2. However, when granulosa cells were cultured with NRG1 and AREG, the phosphorylation of ERK1/2 was markedly enhanced as compared with that by AREG alone. Cotreatment with NRG1 and AREG also increased progesterone production. When cumulus-oocyte complexes (COCs) were cultured with both NRG1 and AREG, the matured oocytes exhibited significantly higher developmental competence as compared with that of oocytes cultured with AREG alone. Collectively, these results document that the expression of type III NRG1 is induced in granulosa cells during ovulation and that NRG1 enhances AREG-induced ERK1/2 phosphorylation in both granulosa cells and cumulus cells. The NRG1 pathway has two roles: one is to enhance AREG-induced progesterone production in granulosa cells, and the other is to regulate oocyte maturation by a cumulus cell-dependent mechanism.
The ovary is an interesting organ that shows major structural changes within a short period of time during each reproductive cycle. Follicle development is controlled by local paracrine and systemic endocrine factors. Many hormonal and molecular analyses have been conducted to find the mechanisms underlying structural changes in ovaries, However, exact mechanisms still remain to be determined. Recent development of mechanobiology facilitates the understanding on the contribution of physical forces and changes in the mechanical properties of cells and tissues to physiology and pathophysiology. The Hippo signaling pathway is one of the key players in mechanotransduction, providing an understanding of the molecular mechanisms by which cells sense and respond to mechanical signals to regulate cell proliferation and apoptosis for maintaining optimal organ sizes. Our group recently demonstrated the involvement of the Hippo signaling pathway in the regulation of ovarian follicle development. Fragmentation of ovarian cortex into small cubes changed cytoskeletal actin dynamics and induced disruption of the Hippo signaling pathway, leading to the production of CCN growth factors and anti-apoptotic BIRC. These factors, in turn, stimulated secondary follicle growth in vitro and in vivo. In this review, we summarized hormonal regulation of follicular structural changes and further focused on the role of Hippo signaling in the regulation of follicle development. We also suggest a new strategy of infertility treatments in patients with polycystic ovary syndrome and primary ovarian insufficiency based on mechanobiology.
Neuregulin 1 (NRG1) is induced in granulosa cells by LH and acts on granulosa and cumulus cells during ovulation. In this study, we sought to determine the role of NRG1 in oocyte maturation by generating a granulosa cell-specific Nrg1 knockout mouse (Nrg1(flox/flox);Cyp19a1Cre mice [gcNrg1KO]). In the gcNrg1KO mice, meiosis was induced 2 hours earlier than in control mice. More than 60% of the oocytes in the mutant mice spontaneously re-resumed meiosis beyond the MII stage. The percentage of successful fertilization was comparable in oocytes of both genotypes collected at 14 or 16 hours after human chorionic gonadotropin injection but was significantly lower in oocytes of the gcNrg1KO mice at 18 or 20 hours. The number of pups per litter was significantly decreased in gcNrg1KO mice. To determine the molecular events associated with the abnormal progression of meiosis in the gcNrg1KO mouse oocytes, the defects of cumulus/granulosa cell functions were analyzed. The expression of genes involved in luteinization and cumulus expansion was significantly higher at 2 hours after human chorionic gonadotropin injection in the gcNrg1KO mice; this was related to abnormal activation of protein kinase C (PKC) and phosphorylation of connexin-43 in cumulus cells. Changes in connexin-43 by PKC might lead to early meiotic resumption of oocytes in gcNrg1KO mice. We conclude that NRG1 is induced by LH in mural granulosa cells and exerts an important regulatory role in oocyte meiotic maturation and competence by reducing PKC activation in cumulus cells and preventing premature progression to the MII stage that leads to abnormal fertilization and fertility.
During in vitro maturation of porcine cumulus-oocyte complexes (COCs), follicle-stimulating hormone (FSH) increases both prostaglandin E2 (PGE2) production and the expression levels of EGF-like factors. The ligands act on cumulus cells by the autocrine system due to their specific receptors, EP2, EP4, or EGF receptor. When each pathway is suppressed by inhibitors, complete cumulus expansion and oocyte maturation do not occur. In this study, we examined the relationship between both of these pathways in cumulus cells of porcine COCs. When COCs were cultured with FSH, Fshr mRNA expression was immediately decreased within 5 h, whereas Ptger2, Ptger4, and Ptgs2 expression levels were significantly increased in cumulus cells in the culture containing FSH for 5 or 10 h. The PTGS2 inhibitor NS398 significantly suppressed not only PGE2 secretion at any culture time point but also Areg, Ereg, and Tace/Adam17 expression in cumulus cells at 10 and 20 h but not at 1 or 5 h. During the early culture period, phosphorylation of MAPK3 and MAPK1 (MAPK3/1) was not affected by NS398; however, at 10 and 20 h, phosphorylation was suppressed by the drug. Furthermore, down-regulations of MAPK3/1 phosphorylation and expression of the target genes by NS398 was overcome by the addition of either PGE2 or EGF. FSH-induced cumulus expansion and meiotic progression to the MII stage were also suppressed by NS398, whereas these effects were also overcome by addition of either PGE2 or EGF. These results indicated that PGE2 is involved in the sustainable activation of MAPK3/1 in cumulus cells via the induction of EGF-like factor, which is required for cumulus expansion and meiotic maturation of porcine COCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.