Melanoma is the deadliest type of skin cancer with highest mortality rate. However, the annihilation in early stage implies a high survival rate therefore, it demands early diagnosis. The accustomed diagnosis methods are costly and cumbersome due to the involvement of experienced experts as well as the requirements for highly equipped environment. The recent advancements in computerized solutions for these diagnoses are highly promising with improved accuracy and efficiency. In this article, we proposed a method for the classification of melanoma and benign skin lesions. Our approach integrates preprocessing, lesion segmentation, features extraction, features selection, and classification. Preprocessing is executed in the context of hair removal by DullRazor, whereas lesion texture and color information are utilized to enhance the lesion contrast. In lesion segmentation, a hybrid technique has been implemented and results are fused using additive law of probability. Serial based method is applied subsequently that extracts and fuses the traits such as color, texture, and HOG (shape). The fused features are selected afterwards by implementing a novel Boltzman Entropy method. Finally, the selected features are classified by Support Vector Machine. The proposed method is evaluated on publically available data set PH2. Our approach has provided promising results of sensitivity 97.7%, specificity 96.7%, accuracy 97.5%, and F-score 97.5%, which are significantly better than the results of existing methods available on the same data set. The proposed method detects and classifies melanoma significantly good as compared to existing methods.
Brain tumor identification using magnetic resonance images (MRI) is an important research domain in the field of medical imaging. Use of computerized techniques helps the doctors for the diagnosis and treatment against brain cancer. In this article, an automated system is developed for tumor extraction and classification from MRI. It is based on marker‐based watershed segmentation and features selection. Five primary steps are involved in the proposed system including tumor contrast, tumor extraction, multimodel features extraction, features selection, and classification. A gamma contrast stretching approach is implemented to improve the contrast of a tumor. Then, segmentation is done using marker‐based watershed algorithm. Shape, texture, and point features are extracted in the next step and high ranked 70% features are only selected through chi‐square max conditional priority features approach. In the later step, selected features are fused using a serial‐based concatenation method before classifying using support vector machine. All the experiments are performed on three data sets including Harvard, BRATS 2013, and privately collected MR images data set. Simulation results clearly reveal that the proposed system outperforms existing methods with greater precision and accuracy.
Skin cancer is being a most deadly type of cancers which have grown extensively worldwide from the last decade. For an accurate detection and classification of melanoma, several measures should be considered which include, contrast stretching, irregularity measurement, selection of most optimal features, and so forth. A poor contrast of lesion affects the segmentation accuracy and also increases classification error. To overcome this problem, an efficient model for accurate border detection and classification is presented. The proposed model improves the segmentation accuracy in its preprocessing phase, utilizing contrast enhancement of lesion area compared to the background. The enhanced 2D blue channel is selected for the construction of saliency map, at the end of which threshold function produces the binary image. In addition, particle swarm optimization (PSO) based segmentation is also utilized for accurate border detection and refinement. Few selected features including shape, texture, local, and global are also extracted which are later selected based on genetic algorithm with an advantage of identifying the fittest chromosome. Finally, optimized features are later fed into the support vector machine (SVM) for classification. Comprehensive experiments have been carried out on three datasets named as PH2, ISBI2016, and ISIC (i.e., ISIC MSK‐1, ISIC MSK‐2, and ISIC UDA). The improved accuracy of 97.9, 99.1, 98.4, and 93.8%, respectively obtained for each dataset. The SVM outperforms on the selected dataset in terms of sensitivity, precision rate, accuracy, and FNR. Furthermore, the selection method outperforms and successfully removed the redundant features.
Breast cancer has affected many women worldwide. To perform detection and classification of breast cancer many computer-aided diagnosis (CAD) systems have been established because the inspection of the mammogram images by the radiologist is a difficult and time taken task. To early diagnose the disease and provide better treatment lot of CAD systems were established. There is still a need to improve existing CAD systems by incorporating new methods and technologies in order to provide more precise results. This paper aims to investigate ways to prevent the disease as well as to provide new methods of classification in order to reduce the risk of breast cancer in women’s lives. The best feature optimization is performed to classify the results accurately. The CAD system’s accuracy improved by reducing the false-positive rates.The Modified Entropy Whale Optimization Algorithm (MEWOA) is proposed based on fusion for deep feature extraction and perform the classification. In the proposed method, the fine-tuned MobilenetV2 and Nasnet Mobile are applied for simulation. The features are extracted, and optimization is performed. The optimized features are fused and optimized by using MEWOA. Finally, by using the optimized deep features, the machine learning classifiers are applied to classify the breast cancer images. To extract the features and perform the classification, three publicly available datasets are used: INbreast, MIAS, and CBIS-DDSM. The maximum accuracy achieved in INbreast dataset is 99.7%, MIAS dataset has 99.8% and CBIS-DDSM has 93.8%. Finally, a comparison with other existing methods is performed, demonstrating that the proposed algorithm outperforms the other approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.