Tropical cyclones are one of the costliest natural disasters globally because of the wide range of associated hazards. Thus, an accurate diagnostic model for tropical cyclone intensity can save lives and property. There are a number of existing techniques and approaches that diagnose tropical cyclone wind speed using satellite data at a given time with varying success. This paper presents a deep learning-based objective, diagnostic estimate of tropical cyclone intensity from infrared satellite imagery with 13.24 kt Root Mean Squared Error (RMSE). In addition, a visualization portal in a production system is presented that displays deep learning output and contextual information for end users, one of the first of its kind.
Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. At the NASA Marshall Space Flight Center (MSFC), the Data Science and Informatics Group (DSIG) has been using deep learning for a variety of Earth science applications. This paper provides examples of the applications and also addresses some of the challenges that were encountered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.