The aim of this study was to investigate whether astroglia in the medullary dorsal horn (trigeminal spinal subnucleus caudalis; Vc) may be involved in orofacial neuropathic pain following trigeminal nerve injury. The effects of intrathecal administration of the astroglial aconitase inhibitor sodium fluoroacetate (FA) were tested on Vc astroglial hyperactivity [as revealed by glial fibrillary acid protein (GFAP) labeling], nocifensive behavior, Vc extracellular signal-regulated kinase phosphorylation (pERK), and Vc neuronal activity in inferior alveolar nerve-transected (IANX) rats. Compared with sham-control rats, a significant increase occurred in GFAP-positive cells in ipsilateral Vc at postoperative day 7 in IANX rats, which was prevented following FA administration. FA significantly increased the reduced head withdrawal latency to high-intensity heat stimulation of the maxillary whisker pad skin in IANX rats, although it did not significantly affect the reduced escape threshold to low-intensity mechanical stimulation of the whisker skin in IANX rats. FA also significantly reduced the increased number of pERK-like immunoreactive cells in Vc and the enhanced Vc nociceptive neuronal responses following high-intensity skin stimulation that were documented in IANX rats, and glutamine administration restored the enhanced responses. These various findings provide the first documentation that astroglia is involved in the enhanced nociceptive responses of functionally identified Vc nociceptive neurons and in the associated orofacial hyperalgesia following trigeminal nerve injury.
In order to clarify the mechanisms underlying the changes in primary afferent neurons in trigeminal neuropathic pain, a chronic constriction nerve injury model of the infraorbital nerve (ION-CCI) was developed in rats. Mechanical allodynia was observed at 3 days after ION-CCI and lasted more than 14 days. Single-unit activities were recorded from the ION of anesthetized rats. C-, Abeta- and Adelta-units were identified on the basis of their conduction velocity. Adelta-units were frequently encountered at a later period after ION-CCI. The highest Adelta-spontaneous activity was recorded at 3 days after ION-CCI and progressively decreased after that, but spontaneous activity was still higher at 14 days after ION-CCI than that of naïve rats. Mechanical-evoked responses of Adelta-units were also highest at 3 days after ION-CCI and then gradually decreased. In consideration of these data, patch-clamp recordings were performed on medium to large size neurons of the dissociated trigeminal ganglion (TRG). Patch-clamp recordings revealed that the IK (sustained) and IA (transient) in rats with ION-CCI were significantly smaller than those of naïve rats, and correlated with an increase in duration of repolarization phase and a decrease in duration of depolarization phase, respectively. The hyperpolarization-activated current (Ih) was significantly larger in TRG neurons of rats with ION-CCI as compared with those of naïve rats. The present results suggest that Ih, IK and IA in Adelta-afferent neurons in TRG are significantly involved in the changes in afferent spontaneous activity and mechanically evoked activity that accompany mechanical allodynia produced by trigeminal nerve injury.
Modulation of trigeminal spinal subnucleus caudalis neuronal activity following regeneration of transected inferior alveolar nerve in rats. To clarify the neuronal mechanisms of abnormal pain in the face innervated by the regenerated inferior alveolar nerve (IAN), nocifensive behavior, trigeminal ganglion neuronal labeling following Fluorogold (FG) injection into the mental skin, and trigeminal spinal subnucleus caudalis (Vc) neuronal properties were examined in rats with IAN transection. The mechanical escape threshold was significantly higher at 3 days and lower at 14 days after IAN transection, whereas head withdrawal latency to heat was significantly longer at 3, 14, and 60 days after IAN transection. The number of FG-labeled ganglion neurons was significantly reduced at 3 days after IAN transection but increased at 14 and 60 days. The number of wide dynamic range (WDR) neurons with background (BG) activity was significantly higher at 14 and 60 days after IAN transection compared with naïve rats, and the number of WDR and low-threshold mechanoreceptive (LTM) neurons with irregularly bursting BG activity was increased at these two time points. Mechanically evoked responses were significantly larger in WDR and LTM neurons 14 days after IAN transection compared with naïve rats. Heat- and cold-evoked responses in WDR neurons were significantly lower at 14 days after transection compared with naïve rats. Mechanoreceptive fields were also significantly larger in WDR and LTM neurons at 14 and 60 days after IAN transection. These findings suggest that these alterations may be involved in the development of mechanical allodynia in the cutaneous region innervated by the regenerated IAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.