Deep neural networks have been successfully applied to activity recognition with wearables in terms of recognition performance. However, the black-box nature of neural networks could lead to privacy concerns. Namely, generally it is hard to expect what neural networks learn from data, and so they possibly learn features that highly discriminate user-information unintentionally, which increases the risk of information-disclosure. In this study, we analyzed the features learned by conventional deep neural networks when applied to data of wearables to confirm this phenomenon. Based on the results of our analysis, we propose the use of an adversarial training framework to suppress the risk of sensitive/unintended information disclosure. Our proposed model considers both an adversarial user classifier and a regular activity-classifier during training, which allows the model to learn representations that help the classifier to distinguish the activities but which, at the same time, prevents it from accessing user-discriminative information. This paper provides an empirical validation of the privacy issue and efficacy of the proposed method using three activity recognition tasks based on data of wearables. The empirical validation shows that our proposed method suppresses the concerns without any significant performance degradation, compared to conventional deep nets on all three tasks.
This paper presents a deadlock-free fault-tolerant routing algorithm for irregular mesh network-on-chips based on a region-based approach. In this approach, a set of rectangular faulty regions called faulty blocks is formed for faulty nodes and a detour path is defined for each faulty block to indicate how packets must detour the faulty block. The most recent routing algorithm on this approach is Message-Route (Holsmark and Kumar J Inf Sci Eng 23:1649-1662, 2007) which does not have restrictions on the number of tolerable faulty nodes and its distribution. However, this algorithm has three crucial problems;(1) this algorithm fails to provide complete and deadlockfree routing, (2) many nonfaulty nodes are contained in faulty blocks and thus deactivated, and (3) complex routing functions are not feasible for hardware implementation. In this paper, we give a solution for each of the above three problems. We correct the errors of Message-Route to make it complete and deadlock-free. Then, we propose a deadlock-free fault-tolerant routing algorithm which can work under small-sized faulty blocks with a simple routing control. Experimental results show that the proposed algorithm significantly reduces the size of faulty blocks and improves communication latency for both random and Responsible Editor: M. Violante Y. Fukushima ( ) · Icluster faults. Moreover, an FPGA implementation of the proposed algorithm is also discussed.
SUMMARYThe recent increase in the use of intelligent devices such as smartphones has enhanced the relationship between daily human behavior sensing and useful applications in ubiquitous computing. This paper proposes a novel method inspired by personal sensing technologies for collecting and visualizing road accessibility at lower cost than traditional data collection methods. To evaluate the methodology, we recorded outdoor activities of nine wheelchair users for approximately one hour each by using an accelerometer on an iPod touch and a camcorder, gathered the supervised data from the video by hand, and estimated the wheelchair actions as a measure of street level accessibility in Tokyo. The system detected curb climbing, moving on tactile indicators, moving on slopes, and stopping, with F-scores of 0.63, 0.65, 0.50, and 0.91, respectively. In addition, we conducted experiments with an artificially limited number of training data to investigate the number of samples required to estimate the target.
Path integration is one of the functions that support the self-localization ability of animals. Path integration outputs position information after an animal’s movement when initial-position and movement information is input. The core region responsible for this function has been identified as the medial entorhinal cortex (MEC), which is part of the hippocampal formation that constitutes the limbic system. However, a more specific core region has not yet been identified. This research aims to clarify the detailed structure at the cell-firing level in the core region responsible for path integration from fragmentarily accumulated experimental and theoretical findings by reviewing 77 papers. This research draws a novel diagram that describes the MEC, the hippocampus, and their surrounding regions by focusing on the MEC’s input/output (I/O) information. The diagram was created by summarizing the results of exhaustively scrutinizing the papers that are relative to the I/O relationship, the connection relationship, and cell position and firing pattern. From additional investigations, we show function information related to path integration, such as I/O information and the relationship between multiple functions. Furthermore, we constructed an algorithmic hypothesis on I/O information and path-integration calculation method from the diagram and the information of functions related to path integration. The algorithmic hypothesis is composed of regions related to path integration, the I/O relations between them, the calculation performed there, and the information representations (cell-firing pattern) in them. Results of examining the hypothesis confirmed that the core region responsible for path integration was either stellate cells in layer II or pyramidal cells in layer III of the MEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.