In this study, we propose an evaluation method for an Advanced Rider Assistance System (ARAS) for two-wheeled vehicles, combining riding simulator experiments and computer simulations in terms of cost-benefit analysis. This evaluation method focuses on the collision warning system at intersections using an ARAS for two-wheeled vehicles. The study was carried out experiments with 30 test subjects who have two-wheeled vehicle licenses and are not novice riders. To quantify the accidentreduction effect, a Monte-Carlo simulation based on a time-series reliability model was used. Based on the collision probability results derived from the Monte-Carlo Simulation, the overall error probability as a human-machine system was calculated based on an integrated error model. In addition, cost-benefit analysis was conducted to quantify the social benefits and costs of introducing the ARAS to the market. As a result, we confirmed that the system can be beneficial after 4 years when introduced into the market. Keywords Cost-benefit analysis. Evaluation method. Advanced rider assistance system (ARAS). Human-machine Interface (HMI). Two-wheeled vehicles. Riding simulator. Time-series reliability model. Integrated error model
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.