Smoking induces a wide range of drug-metabolizing enzymes. Among them, CYP2B6 as well as CYP1A2 is well known to be up-regulated in smokers. Although the induction of CYP1A2 is mediated by the aryl hydrocarbon receptor, the molecular mechanisms of CYP2B6 induction by smoking remain to be fully elucidated. In this study, by preparing cigarette smoke extract (CSE), we addressed the possibility that human constitutive androstane receptor (hCAR) is involved in smoking-mediated induction of CYP2B6. In HepG2 cells, CSE induced CYP1A2 but not CYP2B6, suggesting that CYP2B6 expression is differentially regulated from CYP1A2. Compared with liver in vivo, hCAR expression is dramatically reduced in cultured hepatocytes, such as HepG2. Therefore, to reconstitute hCAR signaling pathways in vitro, we generated adenovirus vector expressing hCAR. Real-time reverse transcription-polymerase chain reaction analyses revealed that the adenoviral transfection of hCAR resulted in the up-regulation of CYP2B6 mRNA, even in the absence of CSE. It is interesting to note that CSE stimulation augmented hCAR-mediated induction of CYP2B6. In contrast, the expression of CYP2B6 was not enhanced by adenovirus vector expressing β-galactosidase, a control vector, either in the presence or absence of CSE. In summary, hCAR mediated the CYP2B6 induction by CSE in Hep2G cells. These data suggest that smoking up-regulates CYP2B6 through hCAR in vivo.
Multidrug and toxin extrusion transporters (MATEs) have a determining influence on the pharmacokinetic profiles of many drugs and are involved in several clinical drug-drug interactions (DDIs). Cellular uptake assays with recombinant cells expressing human MATE1 or MATE2-K are widely used to investigate MATE-mediated transport for DDI assessment; however, the experimental conditions and used test substrates vary among laboratories. We therefore initially examined the impact of three assay conditions that have been applied for MATE substrate and inhibitor profiling in the literature. One of the tested conditions resulted in significantly higher uptake rates of the three test substrates, [ 14
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.