Recent evidence has documented that increased activity of an inducible nitric oxide synthase (iNOS; type 2 NO synthase) in primary isolates of adult rat ventricular myocytes after exposure to soluble mediators in medium conditioned by lipopolysaccharide-activated macrophages is associated with a decrease in their contractile responsiveness to beta-adrenergic agonists. It remained unclear which specific inflammatory cytokines in this medium contribute to the induction of iNOS activity in myocytes and whether induction of iNOS would result in an obligatory decline in contractile function. Interleukin (IL)-1 beta and tumor necrosis factor-alpha (TNF-alpha) were both present in the lipopolysaccharide-activated macrophage-conditioned medium. However, only IL-1 receptor antagonist and not an anti-rat TNF-alpha antiserum diminished the extent of iNOS induction in myocytes exposed to this medium and prevented a decline in contractile responsiveness to isoproterenol. When recombinant cytokines were used, IL-1 beta, TNF-alpha, and IFN-gamma each induced iNOS activity in cardiac myocytes at 24 hours. However, only the combination of IL-1 beta and IFN-gamma reproducibly caused contractile dysfunction in cardiac myocytes. Among the constituents of the defined medium routinely used for maintenance of adult rat ventricular myocytes in primary culture, it was noted that insulin (10(-7) mol/L) was required for NO production, as detected by nitrite release in cytokine-pretreated myocytes, although insulin had no effect on the extent of induction of iNOS mRNA or maximal enzyme activity in myocyte cell lysates.(ABSTRACT TRUNCATED AT 250 WORDS)
Unlike large-vessel endothelial cells in cell culture, cardiac microvascular endothelial cells (CMEC) isolated from adult rat ventricular muscle exhibit little detectable constitutive nitric oxide (NO) synthase activity after isolation in vitro but respond to specific combinations of inflammatory mediators with an increase in inducible NO synthase (iNOS; type 2 NO synthase) activity. CMEC iNOS is induced by soluble inflammatory mediators in lipopolysaccharide-activated rat alveolar macrophage-conditioned medium at 24 hours, and this induction can be partially prevented by either interleukin-1 (IL-1) receptor antagonist or a polyclonal anti-rat tumor necrosis factor-alpha (TNF-alpha) antiserum. Interferon-gamma (IFN-gamma), which by itself does not induce iNOS in CMEC, potentiates and accelerates iNOS induction by IL-1 beta. Transforming growth factor-beta (TGF-beta) decreases iNOS activity, protein content, and mRNA abundance in IL-1 beta- and IFN-gamma-pretreated CMEC. To determine whether NO released by CMEC would affect myocyte contractile function in vitro, freshly isolated ARVM were allowed to settle onto confluent, serum-starved CMEC that had been pretreated for 24 hours with IL-1 beta, a cytokine that alone does not affect myocyte contractile function in vitro. Baseline contractile amplitude, at 2 Hz and 37 degrees C, of myocytes in heterotypic culture with IL-1 beta-pretreated CMEC was not different from that of myocytes in control, homotypic myocyte cultures. However, cocultured myocytes exhibited decreased contractile responsiveness to 2 nmol/L isoproterenol compared with control cells, and this could be reversed by the addition of 1 mmol/L NG-monomethyl-L-arginine, an inhibitor of NOS.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.