The convergence of mechanical, electrical, and advanced ICT technologies, driven by artificial intelligence and 5G vehicle-to-everything (5G-V2X) connectivity, will help to develop high-performance autonomous driving vehicles and services that are usable and convenient for self-driving passengers. Despite widespread research on self-driving, user acceptance remains an essential part of successful market penetration; this forms the motivation behind studies on human factors associated with autonomous shuttle services. We address this by providing a comfortable driving experience while not compromising safety. We focus on the accelerations and jerks of vehicles to reduce the risk of motion sickness and to improve the driving experience for passengers. Furthermore, this study proposes a time-optimal velocity planning method for guaranteeing comfort criteria when an explicit reference path is given. The overall controller and planning method were verified using real-time, software-in-the-loop (SIL) environments for a real-time vehicle dynamics simulation; the performance was then compared with a typical planning approach. The proposed optimized planning shows a relatively better performance and enables a comfortable passenger experience in a self-driving shuttle bus according to the recommended criteria.
We propose an artificial deep neural network- (ANN-) based automatic parking controller that overcomes a stubborn restriction prevalent in traditional approaches. The proposed ANN learns human-like control laws for automatic parking through supervised learning from a training database generated by computer-aided optimizations or real experiments. By learning the relationships between the instantaneous vehicle states and the corresponding maneuver parameters, the proposed twin controller yields lateral and longitudinal maneuvering parameters for executing automatic parking tasks in confined spaces. The proposed automatic parking controller exhibits a twin architecture comprising a main agent and its cloned agent. Before the main agent assumes a maneuvering action, the cloned agent predicts the consequences of the maneuvering action through a Collision Checking and Adjustment (CCA) system. The proposed parking agent operates like a human driver in a manner that is characterized by an unplanned trajectory. In addition, the kinematics of the subject vehicle is not exactly modelled for parking control. The simulation results demonstrate that the proposed twin agent emulates the attributes of a human driver such as adaptive control and determines the consequences of the tentative maneuvering action under varying kinematic models of the subject vehicle. We validate the proposed parking controller by simulating the software-in-the-loop architecture using a PreScan simulator in which the dynamics of the virtual vehicle’s behavior resemble a real vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.