In this paper, we study the electrostatics of pH-responsive polyelectrolyte-grafted spherical particles by using a strong stretching theory that takes into account the excluded volume interaction and the density of chargeable sites on the polyelectrolyte molecules. Based on the free energy formalism, we obtain self-consistent field equations for determining the structure and electrostatics of spherical polyelectrolyte brushes. First, we find that the smaller the radius of the inner core, the longer the height of the polyelectrolyte brush. Then, we also prove that an increase in excluded volume interaction yields an swelling of the polyelectrolyte brush height. In addition, we demonstrate how the effect of pH, bulk ionic concentration, and lateral separation between adjacent polyelectrolyte chains on the electrostatic properties of a spherical polyelectrolyte brush is affected by the radius of inner core, the excluded volume interaction and the chargeable site density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.