The black pine bast scale, M. thunbergianae, is a major insect pest of black pine and causes serious environmental and economic losses in forests. Therefore, it is essential to monitor the occurrence and population of M. thunbergianae, and a monitoring method using a pheromone trap is commonly employed. Because the counting of insects performed by humans in these pheromone traps is labor intensive and time consuming, this study proposes automated deep learning counting algorithms using pheromone trap images. The pheromone traps collected in the field were photographed in the laboratory, and the images were used for training, validation, and testing of the detection models. In addition, the image cropping method was applied for the successful detection of small objects in the image, considering the small size of M. thunbergianae in trap images. The detection and counting performance were evaluated and compared for a total of 16 models under eight model conditions and two cropping conditions, and a counting accuracy of 95% or more was shown in most models. This result shows that the artificial intelligence-based pest counting method proposed in this study is suitable for constant and accurate monitoring of insect pests.
The aim of this study was to investigate the effect of ethyl acetate fraction of Euryale ferox seed extracts (Efse-EA) on melanogenesis in immortalized mouse melanocyte cell line, melan-a. Efse-EA showed strong dose-dependent mushroom tyrosinase inhibitory activity. Treatment of melan-a cells with 30 μg/mL Efse-EA produced strong inhibition of cellular tyrosinase and melanin synthesis. Efse-EA significantly reduced the levels of melanogenesis-related proteins, such as tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor. Because Efse-EA treatment reduced tyrosinase protein levels without changing its mRNA expression, we investigated whether this decrease was related to proteasomal or lysosomal degradation of tyrosinase. We found that chloroquine, a lysosomal proteolysis inhibitor, almost completely abolished both the down-regulation of tyrosinase and the inhibition of melanin synthesis induced by Efse-EA. These results suggested that Efse-EA may contribute to the inhibition of melanogenesis by altering lysosomal degradation of tyrosinase, and that this extract may provide a new cosmetic skin-whitening agent.
Estrogen deficiency after menopause increases bone loss by activating RANKL-induced osteoclast differentiation. Dehydrodiconiferyl alcohol (DHCA), a lignan originally isolated from Cucurbita moschata, has been thought to be a phytoestrogen based on its structure. In this study, we tested whether DHCA could affect RANKL-induced osteoclastogenesis in vitro and ovariectomy-induced bone loss in vivo. In RAW264.7 cells, DHCA inhibited RANKL-induced differentiation of osteoclasts. Consistently, expression of the six osteoclastogenic genes induced by RANKL was down-regulated. DHCA was also shown to suppress the NF-κB and p38 MAPK signaling pathways by activating AMPK. Data from transient transfection assays suggested that DHCA might activate the estrogen receptor signaling pathway. Effects of DHCA on RANKL-induced osteoclastogenesis were reduced when cells were treated with specific siRNA to ERα, but not to ERβ. Interestingly, DHCA was predicted from molecular docking simulation to bind to both ERα and ERβ. Indeed, data from an estrogen receptor competition assay revealed that DHCA acted as an agonist on both estrogen receptors. In the ovariectomized (Ovx) mouse model, DHCA prevented Ovx-induced bone loss by inhibiting osteoclastogenesis. Taken together, our results suggest that DHCA may be developed as an efficient therapeutic for osteoporosis by regulating osteoclastogenesis through its estrogenic effects.
We investigated the repellent effect of 12 Apiaceae plant essential oils on nymphal and adult (male and female) forms of the bean bug, Riptortus clavatus (Thunberg) (Hemiptera: Alydidae), using a four-arm olfactometer. Among the essential oils tested, ajowan (Trachyspermum ammi Sprague) essential oil showed the strongest repellent activity against the nymphal and adult bean bugs. For female adults, the repellent activity was significantly different between an ajowan oil-treated chamber and an untreated chamber down to a concentration of 14.15 μg/cm2. We also investigated the repellent activity of individual ajowan essential oil constituents. Of the compounds examined, carvacrol and thymol showed the most potent repellent activity against the nymphal and adult bean bugs. Carvacrol and thymol exhibited 73.08% and 70.0% repellent activity for the bean bug nymph at 0.71 and 2.83 μg/cm2, respectively, and 82.6% and 80.7% at 5.66 and 11.32 μg/cm2, respectively, for male adults. Carvacrol and thymol exhibited strong repellent activity against female adult bean bugs down to a concentration of 2.83 μg/cm2. Ajowan essential oil, thymol and carvacrol elicited a negative electroantennogram (EAG) response from adult bean bugs. This could explain the repellent activity of ajowan essential oil and its constituents. Our results indicate that ajowan essential oil and its constituents carvacrol and thymol can be potential candidates as the ‘push’ component in a ‘push-pull’ strategy for bean bug control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.