Nanostructured thin plastic foils have been used to enhance the mechanism of laser-driven proton beam acceleration. In particular, the presence of a monolayer of polystyrene nanospheres on the target front side has drastically enhanced the absorption of the incident 100 TW laser beam, leading to a consequent increase in the maximum proton energy and beam charge. The cutoff energy increased by about 60% for the optimal spheres' diameter of 535 nm in comparison to the planar foil. The total number of protons with energies higher than 1 MeV was increased approximately 5 times. To our knowledge this is the first experimental demonstration of such advanced target geometry. Experimental results are interpreted and discussed by means of 2(1/2)-dimensional particle-in-cell simulations.
High-intensity lasers are critical for the exploration of strong field quantum electrodynamics. We report here a demonstration of laser intensity exceeding
1
0
23
W
/
c
m
2
with the CoReLS petawatt (PW) laser. After wavefront correction and tight focusing with a two-stage adaptive optical system and an f/1.1 (
f
=
300
m
m
) off-axis parabolic mirror, we obtained near diffraction-limited focusing with a spot size of 1.1 µm (FWHM). From the measurement of 80 consecutive laser shots at 0.1 Hz, we achieved a peak intensity of
(
1.1
±
0.2
)
×
1
0
23
W
/
c
m
2
, verifying the applicability of the ultrahigh intensity PW laser for ultrahigh intensity laser–matter interactions. From the statistical analysis of the PW laser shots, we identified that the intensity fluctuation originated from air turbulence in the laser beam path and beam pointing. Our achievement could accelerate the study of strong field quantum electrodynamics by enabling exploration of nonlinear Compton scattering and Breit–Wheeler pair production.
Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5×10 19 W/cm 2 to 3.3×10 20 W/cm 2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10-to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3×10 20 W/cm 2. The experimental results were further supported by two-and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5×10 21 W/cm 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.