Lymphocyte-activation gene 3 (LAG-3) is an immune inhibitory receptor, with major histocompatibility complex class II (MHC-II) as a canonical ligand. However, it remains controversial whether MHC-II is solely responsible for the inhibitory function of LAG-3. Here, we demonstrate that fibrinogen-like protein 1 (FGL1), a liver-secreted protein, is a major LAG-3 functional ligand independent from MHC-II. FGL1 inhibits antigen-specific T cell activation, and ablation of FGL1 in mice promotes T cell immunity. Blockade of the FGL1-LAG-3 interaction by monoclonal antibodies stimulates tumor immunity and is therapeutic against established mouse tumors in a receptor-ligand inter-dependent manner. FGL1 is highly produced by human cancer cells, and elevated FGL1 in the plasma of cancer patients is associated with a poor prognosis and resistance to anti-PD-1/ B7-H1 therapy. Our findings reveal an immune evasion mechanism and have implications for the design of cancer immunotherapy.
Mechanisms of acquired resistance to immune checkpoint inhibitors (ICIs) are poorly understood. We leveraged a collection of 14 ICI-resistant lung cancer samples to investigate whether alterations in genes encoding HLA Class I antigen processing and presentation machinery (APM) components or interferon signaling play a role in acquired resistance to PD-1 or PD-L1 antagonistic antibodies. Recurrent mutations or copy number changes were not detected in our cohort. In one case, we found acquired homozygous loss of B2M that caused lack of cell surface HLA class I expression in the tumor and a matched patient-derived xenograft (PDX). Downregulation of B2M was also found in two additional PDXs established from ICI-resistant tumors. CRISPR-mediated knock-out of B2m in an immunocompetent lung cancer mouse model conferred resistance to PD-1 blockade in vivo proving its role in resistance to ICIs. These results indicate that HLA Class I APM disruption can mediate escape from ICIs in lung cancer.
Purpose: To determine the tumor tissue/cell distribution, functional associations, and clinical significance of PD-1, LAG-3, and TIM-3 protein expression in human non-small cell lung cancer (NSCLC). Experimental Design: Using multiplexed quantitative immunofluorescence, we performed localized measurements of CD3, PD-1, LAG-3, and TIM-3 protein in >800 clinically annotated NSCLCs from three independent cohorts represented in tissue microarrays. Associations between the marker's expression and major genomic alterations were studied in The Cancer Genome Atlas NSCLC dataset. Using mass cytometry (CyTOF) analysis of leukocytes collected from 20 resected NSCLCs, we determined the levels, coexpression, and functional profile of PD-1, LAG-3, and TIM-3 expressing immune cells. Finally, we measured the markers in baseline samples from 90 patients with advanced NSCLC treated with PD-1 axis blockers and known response to treatment. Results: PD-1, LAG-3, and TIM-3 were detected in tumorinfiltrating lymphocytes (TIL) from 55%, 41.5%, and 25.3% of NSCLC cases, respectively. These markers showed a prominent association with each other and limited association with major clinicopathologic variables and survival in patients not receiving immunotherapy. Expression of the markers was lower in EGFR-mutated adenocarcinomas and displayed limited association with tumor mutational burden. In single-cell CyTOF analysis, PD-1 and LAG-3 were predominantly localized on T-cell subsets/NKT cells, whereas TIM-3 expression was higher in NK cells and macrophages. Coexpression of PD-1, LAG-3, and TIM-3 was associated with prominent T-cell activation (CD69/CD137), effector function (Granzyme-B), and proliferation (Ki-67), but also with elevated levels of proapoptotic markers (FAS/BIM). LAG-3 and TIM-3 were present in TIL subsets lacking PD-1 expression and showed a distinct functional profile. In baseline samples from 90 patients with advanced NSCLC treated with PD-1 axis blockers, elevated LAG-3 was significantly associated with shorter progressionfree survival. Conclusions: PD-1, LAG-3, and TIM-3 have distinct tissue/ cell distribution, functional implications, and genomic correlates in human NSCLC. Expression of these immune inhibitory receptors in TILs is associated with prominent activation, but also with a proapoptotic T-cell phenotype. Elevated LAG-3 expression is associated with insensitivity to PD-1 axis blockade, suggesting independence of these immune evasion pathways.
Purpose Determine the localized expression pattern and clinical significance of VISTA/PD-1H in human NSCLC. Experimental Design Using multiplex quantitative immunofluorescence (QIF), we performed localized measurements of VISTA, PD-1 and PD-L1 protein in 758 stage I-IV NSCLCs from 3 independent cohorts represented in tissue microarray format. The targets were selectively measured in cytokeratin+ tumor epithelial cells, CD3+ T-cells, CD4+ T-helper cells, CD8+ cytotoxic T-cells, CD20+ B-lymphocytes and CD68+ tumor-associated macrophages. We determined the association between the targets, clinico-pathological/molecular variables and survival. Genomic analyses of lung cancer cases from TCGA was also performed. Results VISTA protein was detected in 99% of NSCLCs with a predominant membranous/cytoplasmic staining pattern. Expression in tumor and stromal cells was seen in 21% and 98% of cases, respectively. The levels of VISTA were positively associated with PD-L1, PD-1, CD8+ T-cells and CD68+ macrophages. VISTA expression was higher in T-lymphocytes than in macrophages; and in cytotoxic T-cells than in T-helper cells. Elevated VISTA was associated with absence of EGFR mutations and lower mutational burden in lung adenocarcinomas. Presence of VISTA in tumor compartment predicted longer 5-year survival. Conclusions VISTA is frequently expressed in human NSCLC and shows association with increased TILs, PD-1 axis markers, specific genomic alterations and outcome. These results support the immuno-modulatory role of VISTA in human NSCLC and suggests its potential as therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.