Brain-derived neurotrophic factor (BDNF) has a critical role in stress response including neuropsychiatric disorders that are precipitated by stress, such as major depressive disorder (MDD). BDNF acts through its full length BDNF receptor, tyrosine kinase B (TrkB), to trigger a pro-plasticity effect. In contrast, the truncated isoform of the BDNF receptor (TrkB.t1) triggers an anti-plasticity effect. In stress outcomes, BDNF acting in the hippocampus has a stress resilient effect, whereas BDNF in the nucleus accumbens (NAc) promotes stress susceptibility. It is unknown if BDNF-TrkB acts on a specific NAc projection subtype or medium spiny neuron (MSN) subtype, in stress outcomes. To determine this, we performed chronic social or a vicarious witness defeat stress (CSDS or CWDS) in mice expressing TrkB.t1 in dopamine receptor 1 or 2 containing MSNs (D1- or D2-MSNs). Our results showed that TrkB.t1 overexpression in NAc D2-MSNs prevented the CSDS-induced social avoidance or other stress susceptible behaviors in male and female mice. Further, we showed that this overexpression in D2-MSNs blocked stress susceptible behavior induced by intra-NAc BDNF infusion. In contrast, our results demonstrate that overexpression of TrkB.t1 on NAc D1-MSNs facilitates the SDS susceptible behaviors. Our study provides enhanced understanding of NAc cell subtype roles of BDNF-TrkB signaling in stress outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.