The antiphospholipid syndrome (APS) is characterized by the presence of pathogenic autoantibodies against β2-glycoprotein-I (β2GPI). The factors causing production of anti-β2GPI remain unidentified, but an association with infectious agents has been reported. Recently, we identified a hexapeptide (TLRVYK) that is recognized specifically by a pathogenic anti-β2GPI mAb. In the present study we evaluated the APS-related pathogenic potential of microbial pathogens carrying sequences related to this hexapeptide. Mice immunized with a panel of microbial preparations were studied for the development of anti-β2GPI autoantibodies. IgG specific to the TLRVYK peptide were affinity purified from the immunized mice and passively infused intravenously into naive mice at day 0 of pregnancy. APS parameters were evaluated in the infused mice on day 15 of pregnancy. Following immunization, high titers of antipeptide [TLRVYK] anti-β2GPI Ab's were observed in mice immunized with Haemophilus influenzae, Neisseria gonorrhoeae, or tetanus toxoid. The specificity of binding to the corresponding target molecules was confirmed by competition and immunoblot assays. Naive mice infused with the affinity-purified antipeptide Ab's had significant thrombocytopenia, prolonged activated partial thromboplastin time and elevated percentage of fetal loss, similar to a control group of mice immunized with a pathogenic anti-β2GPI mAb. Our study establishes a mechanism of molecular mimicry in experimental APS, demonstrating that bacterial peptides homologous with β2GPI induce pathogenic anti-β2GPI Ab's along with APS manifestations.
Our results point to a similar systemic expression of BD in children and adults; however, the disease seems to run a less severe course in children.
Secondary bacterial infections are a potentially fatal complication of influenza infection. We aimed to define the impact of secondary bacterial infections on the clinical course and mortality in coronavirus disease 2019 (COVID-19) patients by comparison with influenza patients. COVID-19 (n = 642) and influenza (n = 742) patients, admitted to a large tertiary center in Israel and for whom blood or sputum culture had been taken were selected for this study. Bacterial culture results, clinical parameters, and death rates were compared. COVID-19 patients had higher rates of bacterial infections than influenza patients (12.6% vs. 8.7%). Notably, the time from admission to bacterial growth was longer in COVID-19 compared to influenza patients (4 (1–8) vs. 1 (1–3) days). Late infections (> 48 h after admission) with gram-positive bacteria were more common in COVID-19 patients (28% vs. 9.5%). Secondary infection was associated with a higher risk of death in both patient groups 2.7-fold (1.22–5.83) for COVID-19, and 3.09-fold (1.11–7.38) for Influenza). The association with death remained significant upon adjustment to age and clinical parameters in COVID-19 but not in influenza infection. Secondary bacterial infection is a notable complication associated with worse outcomes in COVID-19 than influenza patients. Careful surveillance and prompt antibiotic treatment may benefit selected patients.
The antiphospholipid syndrome (APS) is characterized by the presence of pathogenic autoantibodies against β2-glycoprotein-I (β2GPI). The factors causing production of anti-β2GPI remain unidentified, but an association with infectious agents has been reported. Recently, we identified a hexapeptide (TLRVYK) that is recognized specifically by a pathogenic anti-β2GPI mAb. In the present study we evaluated the APS-related pathogenic potential of microbial pathogens carrying sequences related to this hexapeptide. Mice immunized with a panel of microbial preparations were studied for the development of anti-β2GPI autoantibodies. IgG specific to the TLRVYK peptide were affinity purified from the immunized mice and passively infused intravenously into naive mice at day 0 of pregnancy. APS parameters were evaluated in the infused mice on day 15 of pregnancy. Following immunization, high titers of antipeptide [TLRVYK] anti-β2GPI Ab's were observed in mice immunized with Haemophilus influenzae, Neisseria gonorrhoeae, or tetanus toxoid. The specificity of binding to the corresponding target molecules was confirmed by competition and immunoblot assays. Naive mice infused with the affinity-purified antipeptide Ab's had significant thrombocytopenia, prolonged activated partial thromboplastin time and elevated percentage of fetal loss, similar to a control group of mice immunized with a pathogenic anti-β2GPI mAb. Our study establishes a mechanism of molecular mimicry in experimental APS, demonstrating that bacterial peptides homologous with β2GPI induce pathogenic anti-β2GPI Ab's along with APS manifestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.