The rapid increase in graphene-based applications has been accompanied by novel top-down manufacturing methods for graphene and its derivatives (e.g., graphene nanoplatelets (GnPs)). The characterization of the bulk properties of these materials by imaging and surface techniques (e.g., electron microscopy and Raman spectroscopy) is only possible through laborious and time-consuming statistical analysis, which precludes simple and efficient quality control during GnP production. We report that thermogravimetry (TG) may be utilized, beyond its conventional applications (e.g., quantification of impurities or surfactants, or labile functional groups) to characterize bulk GnP properties. We characterize the structural parameters of GnP (i.e., defect density, mean lateral dimension, and polydispersity) by imaging and surface techniques, on one hand, and by a systematic TG, on the other. The combined data demonstrate that the combustion temperature of commercially available and laboratory-prepared GnPs is correlated with their mean lateral dimension and defect density, while the combustion temperature range is proportional to their polydispersity index. Mapping all these parameters allows one to evaluate the GnPs' structure following a simple thermogravimetric experiment (without necessitating further statistical analysis). Finally, TG is also used to detect and quantify different GnP constituents in powder and to conduct rapid quality-control tests during GnP production.
ILAN PRI-BAR and HOWARD ALPER. Can. J. Chem. 68, 1544 ( I 990). Iodine is an effective promoter for the carbonylation of primary and secondary amines to ureas using palladium acetate as the catalyst and a base (e.g. K2CO3) in acetonitrile (3 h at 95OC and 2.7 atm). Oxamides are formed in excellent yields when secondary amines are carbonylated in the presence of iodide ion and oxygen, while primary amines give ureas as the principal product at 95"C, and oxamide at room temperature.
In order to label dopamine D2 receptors selectively we tritiated the potent benzamide neuroleptic, YM-09151-2 (26.7 Ci/mmol). The binding of [3H]-YM-09151-2 to canine striatal membranes was saturable and specific with a KD of 57 pmol/l and Bmax of 36 pmol/g tissue as determined by Scatchard analysis. The KD, but not the Bmax, of [3H]-YM-09151-2 increased 6-fold in the absence of sodium chloride. [3H]-YM-09151-2 labeled 40% more sites than [3H]-spiperone in the same tissue homogenate. [3H]-YM-09151-2 binding was inhibited by dopaminergic drugs in a concentration and stereoselective manner with the appropriate dopamine D2 receptor profile. Thus, dopamine agonists inhibited [3H]-YM-09151-2 binding to canine striatal membranes with the following rank order of potency: (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than (-)-noradrenaline greater than serotonin greater than (-)-isoprenaline. Dopaminergic antagonists competed for [3H]-YM-09151-2 binding with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than SCH-23390 greater than (-)-butaclamol. Furthermore, dopamine agonists recognized 2 states of the receptor labeled by [3H]-YM-09151-2, Dhigh2 and Dlow2. The Dhigh2 state of the receptor could be converted to Dlow2 by guanine nucleotides and sodium ions as is the case for [3H]-spiperone binding to D2 receptors. [3H]-YM-09151-2 appears to be a more selective ligand for dopamine D2 receptors than [3H]-spiperone, since YM-09151-2 displays approximately 9-fold lower affinity than spiperone for cortical serotonergic (S2) receptors. [3H]-YM-09151-2 may become a useful tool for the selective characterization of dopamine D2 receptors.
Solid-phase hydrogenation kinetics can be substantially increased by utilizing hydrogen spillover phenomenon. Carbonaceous allotropes are considered as promising spillover agents (SOAs) for improved hydrogen transport rate. We studied the effect of carbon-based SOA properties on irreversible hydrogenation. We divided the reaction into two major stages, near-and far-field hydrogenation (with respect to a catalyst), and determined their rate-limiting steps. The hydrogenation kinetics was analyzed for hydrogen originating from either catalyst on activated carbon or catalyst-decorated carbon nanotubes. The far-field hydrogenation is investigated for three types of loaded nanocarbons: 1D (nanotubes), 2D (graphene), and 3D (activated carbon). We found that the kinetics acceleration is strongly correlated with the nanocarbon dimension, 1D > 2D > 3D, and could reach almost 2 orders of magnitude. These findings are useful for the study of reversible hydrogen storage applications. Article pubs.acs.org/JPCC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.