BACKGROUNDCoronavirus disease 2019 occurs after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For persons who are exposed, the standard of care is observation and quarantine. Whether hydroxychloroquine can prevent symptomatic infection after SARS-CoV-2 exposure is unknown. METHODSWe conducted a randomized, double-blind, placebo-controlled trial across the United States and parts of Canada testing hydroxychloroquine as postexposure prophylaxis. We enrolled adults who had household or occupational exposure to someone with confirmed Covid-19 at a distance of less than 6 ft for more than 10 minutes while wearing neither a face mask nor an eye shield (high-risk exposure) or while wearing a face mask but no eye shield (moderate-risk exposure). Within 4 days after exposure, we randomly assigned participants to receive either placebo or hydroxychloroquine (800 mg once, followed by 600 mg in 6 to 8 hours, then 600 mg daily for 4 additional days). The primary outcome was the incidence of either laboratory-confirmed Covid-19 or illness compatible with Covid-19 within 14 days. RESULTSWe enrolled 821 asymptomatic participants. Overall, 87.6% of the participants (719 of 821) reported a high-risk exposure to a confirmed Covid-19 contact. The incidence of new illness compatible with Covid-19 did not differ significantly between participants receiving hydroxychloroquine (49 of 414 [11.8%]) and those receiving placebo (58 of 407 [14.3%]); the absolute difference was −2.4 percentage points (95% confidence interval, −7.0 to 2.2; P = 0.35). Side effects were more common with hydroxychloroquine than with placebo (40.1% vs. 16.8%), but no serious adverse reactions were reported. CONCLUSIONSAfter high-risk or moderate-risk exposure to Covid-19, hydroxychloroquine did not prevent illness compatible with Covid-19 or confirmed infection when used as postexposure prophylaxis within 4 days after exposure. (Funded by David Baszucki and Jan Ellison Baszucki and others; ClinicalTrials.gov number, NCT04308668.
Background: No effective oral therapy exists for early coronavirus disease 2019 (COVID-19). Objective: To investigate whether hydroxychloroquine could reduce COVID-19 severity in adult outpatients. Design: Randomized, double-blind, placebo-controlled trial conducted from 22 March through 20 May 2020. (ClinicalTrials .gov: NCT04308668) Setting: Internet-based trial across the United States and Canada (40 states and 3 provinces). Participants: Symptomatic, nonhospitalized adults with laboratoryconfirmed COVID-19 or probable COVID-19 and high-risk exposure within 4 days of symptom onset. Intervention: Oral hydroxychloroquine (800 mg once, followed by 600 mg in 6 to 8 hours, then 600 mg daily for 4 more days) or masked placebo. Measures: Symptoms and severity at baseline and then at days 3, 5, 10, and 14 using a 10-point visual analogue scale. The primary end point was change in overall symptom severity over 14 days. Results: Of 491 patients randomly assigned to a group, 423 contributed primary end point data. Of these, 341 (81%) had laboratory-confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or epidemiologically linked exposure to a person with laboratory-confirmed infection; 56% (236 of 423) were enrolled within 1 day of symptoms starting. Change in symptom severity over 14 days did not differ between the hydroxychloroquine and placebo groups (difference in symptom severity: relative, 12%; absolute, Ϫ0.27 points [95% CI, Ϫ0.61 to 0.07 points]; P = 0.117). At 14 days, 24% (49 of 201) of participants receiving hydroxychloroquine had ongoing symptoms compared with 30% (59 of 194) receiving placebo (P = 0.21). Medication adverse effects occurred in 43% (92 of 212) of participants receiving hydroxychloroquine versus 22% (46 of 211) receiving placebo (P < 0.001). With placebo, 10 hospitalizations occurred (2 non-COVID-19-related), including 1 hospitalized death. With hydroxychloroquine, 4 hospitalizations occurred plus 1 nonhospitalized death (P = 0.29). Limitations: Only 58% of participants received SARS-CoV-2 testing because of severe U.S. testing shortages. Conclusion: Hydroxychloroquine did not substantially reduce symptom severity in outpatients with early, mild COVID-19.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a rapidly emerging viral infection causing coronavirus disease 2019 (COVID-19). Hydroxychloroquine and chloroquine have garnered unprecedented attention as potential therapeutic agents against COVID-19 following several small clinical trials, uncontrolled case series, and public figure endorsements. While there is a growing body of scientific data, there is also concern for harm, particularly QTc prolongation and cardiac arrhythmias. Here, we perform a rapid narrative review and discuss the strengths and limitations of existing in vitro and clinical studies. We call for additional randomized controlled trial evidence prior to the widespread incorporation of hydroxychloroquine and chloroquine into national and international treatment guidelines.
: The landscape of clinical mycology is constantly changing. New therapies for malignant and autoimmune diseases have led to new risk factors for unusual mycoses. Invasive candidiasis is increasingly caused by non-albicans Candida spp., including C. auris, a multidrug-resistant yeast with the potential for nosocomial transmission that has rapidly spread globally. The use of mould-active antifungal prophylaxis in patients with cancer or transplantation has decreased the incidence of invasive fungal disease, but shifted the balance of mould disease in these patients to those from non-fumigatus Aspergillus species, Mucorales, and Scedosporium/Lomentospora spp. The agricultural application of triazole pesticides has driven an emergence of azole-resistant A. fumigatus in environmental and clinical isolates. The widespread use of topical antifungals with corticosteroids in India has resulted in Trichophyton mentagrophytes causing recalcitrant dermatophytosis. New dimorphic fungal pathogens have emerged, including Emergomyces, which cause disseminated mycoses globally, primarily in HIV infected patients, and Blastomyces helicus and B. percursus, causes of atypical blastomycosis in western parts of North America and in Africa, respectively. In North America, regions of geographic risk for coccidioidomycosis, histoplasmosis, and blastomycosis have expanded, possibly related to climate change. In Brazil, zoonotic sporotrichosis caused by Sporothrix brasiliensis has emerged as an important disease of felines and people.
Summary Recent discoveries of novel systemic fungal pathogens with thermally dimorphic yeast-like phases have challenged the current taxonomy of the Ajellomycetaceae, a family currently comprising the genera Blastomyces, Emmonsia, Emmonsiellopsis, Helicocarpus, Histoplasma, Lacazia and Paracoccidioides. Our morphological, phylogenetic and phylogenomic analyses demonstrated species relationships and their specific phenotypes, clarified generic boundaries and provided the first annotated genome assemblies to support the description of two new species. A new genus, Emergomyces, accommodates Emmonsia pasteuriana as type species, and the new species Emergomyces africanus, the etiological agent of case series of disseminated infections in South Africa. Both species produce small yeast cells that bud at a narrow base at 37 °C and lack adiaspores classically associated with the genus Emmonsia. Another novel dimorphic pathogen, producing broad-based budding cells at 37 °C and occurring outside North America, proved to belong to the genus Blastomyces, and is described as Blastomyces percursus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.