Cytosolic sulfotransferases (SULTs) are mammalian enzymes that detoxify a wide variety of chemicals through the addition of a sulfate group. Despite extensive research, the molecular basis for the broad specificity of SULTs is still not understood. Here, structural, protein engineering and kinetic approaches were employed to obtain deep understanding of the molecular basis for the broad specificity, catalytic activity and substrate inhibition of SULT1A1. We have determined five new structures of SULT1A1 in complex with different acceptors, and utilized a directed evolution approach to generate SULT1A1 mutants with enhanced thermostability and increased catalytic activity. We found that active site plasticity enables binding of different acceptors and identified dramatic structural changes in the SULT1A1 active site leading to the binding of a second acceptor molecule in a conserved yet non-productive manner. Our combined approach highlights the dominant role of SULT1A1 structural flexibility in controlling the specificity and activity of this enzyme.
SummaryIn recent years, the application of approaches for harvesting DNA from the environment, the so‐called, ‘metagenomic approaches’ has proven to be highly successful for the identification, isolation and generation of novel enzymes. Functional screening for the desired catalytic activity is one of the key steps in mining metagenomic libraries, as it does not rely on sequence homology. In this mini‐review, we survey high‐throughput screening tools, originally developed for directed evolution experiments, which can be readily adapted for the screening of large libraries. In particular, we focus on the use of in vitro compartmentalization (IVC) approaches to address potential advantages and problems the merger of culture‐independent and IVC techniques might bring on the mining of enzyme activities in microbial communities.
Replication of physiological oxygen levels is fundamental for modeling human physiology and pathology in in vitro models. Environmental oxygen levels, applied in most in vitro models, poorly imitate the oxygen conditions cells experience in vivo, where oxygen levels average ∼5%. Most solid tumors exhibit regions of hypoxic levels, promoting tumor progression and resistance to therapy. Though this phenomenon offers a specific target for cancer therapy, appropriate in vitro platforms are still lacking. Microfluidic models offer advanced spatio-temporal control of physico-chemical parameters. However, most of the systems described to date control a single oxygen level per chip, thus offering limited experimental throughput. Here, we developed a multi-layer microfluidic device coupling the high throughput generation of 3D tumor spheroids with a linear gradient of five oxygen levels, thus enabling multiple conditions and hundreds of replicates on a single chip. We showed how the applied oxygen gradient affects the generation of reactive oxygen species (ROS) and the cytotoxicity of Doxorubicin and Tirapazamine in breast tumor spheroids. Our results aligned with previous reports of increased ROS production under hypoxia and provide new insights on drug cytotoxicity levels that are closer to previously reported in vivo findings, demonstrating the predictive potential of our system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.