Onset and end of the rainy season in the Amazon Basin are examined for the period 1979-96. The onset and end dates are determined by averaging daily rainfall data from many stations, and then constructing 5-day averages (pentads). Onset (end) is defined as the pentad in which rainfall exceeds (falls below) a given threshold, provided that average rainfall was well below (above) the threshold for several pentads preceding onset (end), and well above (below) the threshold for several pentads after onset (end). For the criteria chosen, the clima-tological onset progresses toward the southeast, arriving in mid-October, and then toward the mouth of the Amazon, arriving near the end of the year. The end dates are earliest in the southeast and progress toward the north, but withdrawal is slower than onset. The onset dates, however, are quite sensitive to changes in the threshold. If the threshold is doubled, for example, the sense of onset is reversed, with onset occurring toward the northwest. Changes in threshold do not change the direction of the progression of the end of the rainy season. The central Amazon shows the largest variation in the date of onset. In several years, onset in the southeast occurs before that in the central Amazon, but onset near the mouth is always latest. There is an unexpectedly low relationship between the length of the rainy season and total accumulation. Likewise, there is little relationship between the onset (and end) date and the total accumulation. Composites of outgoing longwave radiation and the low-level wind field show that in the central Amazon, onset is associated with an anomalous anticyclone and enhanced trade winds in the Atlantic. Near the mouth of the Amazon, however, onset is associated with large-scale northerly anomalies, and the zonal component of the trade winds is reduced. There is an apparent association between sea surface temperature anomalies in the tropical Atlantic and Pacific and the pentads of onset and end of the rainy season in the northern and central Amazon, and near its mouth. The sense is that a warm Pacific and cold Atlantic result in a delayed onset and early withdrawal. Although the strong El Niño of 1982/83 and La Niña 1988/89 were examples of a delayed and early onset, respectively, the relationships it still holds these years are not considered.
[1] This study analyzes and discusses data taken from oceanic and atmospheric measurements performed simultaneously at the Brazil-Malvinas Confluence (BMC) region in the southwestern Atlantic Ocean. This area is one of the most dynamical frontal regions of the world ocean. Data were collected during four research cruises in the region once a year in consecutive years between 2004 and 2007. Very few studies have addressed the importance of studying the air-sea coupling at the BMC region. Lateral temperature gradients at the study region were as high as 0.3°C km À1 at the surface and subsurface. In the oceanic boundary layer, the vertical temperature gradient reached 0.08°C m À1 at 500 m depth. Our results show that the marine atmospheric boundary layer (MABL) at the BMC region is modulated by the strong sea surface temperature (SST) gradients present at the sea surface. The mean MABL structure is thicker over the warmside of the BMC where Brazil Current (BC) waters predominate. The opposite occurs over the coldside of the confluence where waters from the Malvinas (Falkland) Current (MC) are found. The warmside of the confluence presented systematically higher MABL top height compared to the coldside. This type of modulation at the synoptic scale is consistent to what happens in other frontal regions of the world ocean, where the MABL adjusts itself to modifications along the SST gradients. Over warm waters at the BMC region, the MABL static instability and turbulence were increased while winds at the lower portion of the MABL were strong. Over the coldside of the BC/MC front an opposite behavior is found: the MABL is thinner and more stable. Our results suggest that the sea-level pressure (SLP) was also modulated locally, together with static stability vertical mixing mechanism, by the surface condition during all cruises. SST gradients at the BMC region modulate the synoptic atmospheric pressure gradient. Postfrontal and prefrontal conditions produce opposite thermal advections in the MABL that lead to different pressure intensification patterns across the confluence.
Abstract. The southwestern Atlantic Ocean is characterized by the confluence of the Brazil and Malvinas Currents, which form very strong surface and subsurface fronts that can be detected from hydrographic and remote sensing observations. Three data sets, consisting of TOPEX/Poseidon-derived sea height anomalies, the climatologically derived depth of the 10øC isotherm, and reduced gravity, are used in conjunction with a two-layer dynamical ocean scheme to monitor the Brazil Current front and to investigate its variability during a 6 year period (1993)(1994)(1995)(1996)(1997)(1998). Results reveal that the fronts exhibit motions that are larger zonally than meridionally, showing strong interannual variability with annual mean amplitudes that range from 1 ø to 6 ø. The annual and semiannual components account for more than 75% of the variability of the frontal oscillations. In the annual cycle the frontal motions appear to be related closely to fluctuations in the baroclinic transport of the Brazil Current and are only influenced by the Malvinas Current when the Brazil Current transport is very small.
Abstract. The objective of this study is to compare the mean and seasonal variability of the circulation in the southwest Atlantic with observations. The results used in the comparison are fi'om the last 200 years of a 300 year control integration of the Climate System Model (CSM). The area of study includes the confluence region between the subtropical and subpolar waters represented by the Brazil and Malvinas Currents. The seasonal variation of transport and its relationship to changes in the wind stress forcing and in the sea surface temperature are examined and compared to available oceanographic observations. This study shows that a coarse resolution climate model, such as the CSM, can successfully reproduce major characteristics of the Brazil-Malvinas confluence seasonality, although the mesoscale features involving recirculation and meander dynamics are not resolved. The CSM transport values in the region of 38øS are consistent with hydrographically derived values. The transport of the CSM Brazil Current is higher during austral summer and smaller during austral winter. Conversely, the Malvinas Current transport is weaker during austral summer and stronger during austral winter. This is also consistent with observations. The CSM seasonal cycle in transport associated with both the Brazil and Malvinas Currents and its meridional displacement is closely linked to the seasonal variations in the local wind stress curl. However, the displacement is much smaller in the model than in observations. The CSM results show that the latitudinal displacement of the 24øC and 17øC at the South American coast beween austral summer and winter is 20 ø and 12 ø, respectively. This is very similar to the displacement seen in observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.