We describe the development of OncoFAP, an ultra-high-affinity ligand of fibroblast activation protein (FAP) for targeting applications with pan-tumoral potential. OncoFAP binds to human FAP with affinity in the subnanomolar concentration range and cross-reacts with the murine isoform of the protein. We generated various fluorescent and radiolabeled derivatives of OncoFAP in order to study biodistribution properties and tumor-targeting performance in preclinical models. Fluorescent derivatives selectively localized in FAP-positive tumors implanted in nude mice with a rapid and homogeneous penetration within the neoplastic tissue. Quantitative in vivo biodistribution studies with a lutetium-177–labeled derivative of OncoFAP revealed a preferential localization in tumors at doses of up to 1,000 nmol/kg. More than 30% of the injected dose had already accumulated in 1 g of tumor 10 min after intravenous injection and persisted for at least 3 h with excellent tumor-to-organ ratios. OncoFAP also served as a modular component for the generation of nonradioactive therapeutic products. A fluorescein conjugate mediated a potent and FAP-dependent tumor cell killing activity in combination with chimeric antigen receptor (CAR) T cells specific to fluorescein. Similarly, a conjugate of OncoFAP with the monomethyl auristatin E-based Vedotin payload was well tolerated and cured tumor-bearing mice in combination with a clinical-stage antibody-interleukin-2 fusion. Collectively, these data support the development of OncoFAP-based products for tumor-targeting applications in patients with cancer.
The identification of a new series of P. falciparum growth inhibitors is described. Starting from a series of known human class I HDAC inhibitors a SAR exploration based on growth inhibitory activity in parasite and human cells-based assays led to the identification of compounds with submicromolar inhibition of P. falciparum growth (EC 50 < 500 nM) and good selectivity over the activity of human HDAC in cells (up to >50-fold). Inhibition of parasital HDACs as the mechanism of action of this new class of selective growth inhibitors is supported by hyperacetylation studies.KEYWORDS: Malaria, Plasmodium falciparum, PfHDAC1, 4-arylimidazoles I nfection with malaria parasites such as Plasmodium falciparum remains a devastating cause of death in tropical geographies with 40% of the world population at risk of acquiring the disease. There are approximately 200 million clinical cases of malaria every year leading to an estimated 600,000 deaths.1 The requirement for improved therapies to treat and to cure malaria is an evident medical and humanitarian need that is exacerbated by an alarming rise in parasite resistance to the current standard of care.2,3 Drugs that operate via novel mechanisms of action for which no innately resistant parasites are expected are therefore especially desirable.DNA is tightly packed around histone proteins in the nucleus of eukaryotic cells with its transcription being regulated by chemical modifications to the nucleosomal histone proteins themselves. Histone deacetylases (HDACs) are zinc-dependent enzymes that play crucial roles in modulating mammalian cell chromatin structure, transcription, and gene expression. 4−6HDACs have also been identified as important regulators of transcription in P. falciparum, 7−10 and inhibition of P. falciparum histone deacetylases (Pf HDACs) has been reported to both effectively kill the parasites (Vorinostat, Figure 1) 11−16 and lead to efficacy in animal models of malaria (compound 2).17 Such findings underscore the potential for Pf HDAC inhibitors to be used for malaria therapy. 18−20 Of the five HDAC encoding genes known in P. falciparum one has homology to mammalian class I isoforms (Pf HDAC1), two are similar class II (Pf HDAC2 and 3) mammalian HDACs, while the remaining two are class III HDACs, or silent information regulator 2 (SIR2) proteins. 19 In light of the close sequence homology between Pf HDAC1 and human class I HDACs 21 an
The application of class I HDAC inhibitors as cancer therapies is well established, but more recently their development for nononcological indications has increased. We report here on the generation of improved class I selective human HDAC inhibitors based on an ethylketone zinc binding group (ZBG) in place of the hydroxamic acid that features the majority of HDAC inhibitors. We also describe a novel set of HDAC3 isoform selective inhibitors that show stronger potency and selectivity than the most commonly used HDAC3 selective tool compound RGFP966. These compounds are again based on an alternative ZBG with respect to the ortho-anilide that is featured in HDAC3 selective compounds reported to date.
The NRF2-ARE pathway is an intrinsic mechanism of defense against oxidative stress. Inhibition of the interaction between NRF2 and its main negative regulator KEAP1 is an attractive strategy toward neuroprotective agents. We report here the identification of nonacidic tetrahydroisoquinolines (THIQs) that inhibit the KEAP1/NRF2 protein–protein interaction. Peptide SAR at one residue is utilized as a tool to probe structural changes within a specific pocket of the KEAP1 binding site. We used structural information from peptide screening at the P2 pocket, noncovalent small-molecules inhibitors, and the outcome from an explorative SAR at position 5 of THIQs to identify a series of neutral THIQ analogs that bind to KEAP1 in the low micromolar range. These analogs establish new H-bond interactions at the P3 and P2 pockets allowing the replacement of the carboxylic acid functionality by a neutral primary carboxamide. X-ray crystallographic studies reveal the novel binding mode of these molecules to KEAP1.
Molecular bromine is shown to stereoselectively brominate readily available alkyl phenyl sulphides under exceptionally mild reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.