A method for regioselective synthesis of 2,4-disubstituted and more highly substituted fluorenols using catalytic [2+2+2]cyclotrimerization of mono- and disubstituted diynes with terminal alkynes was explored. In the former case, the preferential formation of the 2,4-regioisomers was achieved in the presence of Cp*Ru(cod)Cl, whereas Rh-based catalysts tended to provide 3,4-regioisomers as the major products. The 2,4-disubstituted fluorenols were converted into the corresponding 9,9′-spirobifluorene derivatives and their structural and photophysical properties were evaluated.
A first series of fluorinated [n]helical compounds (n = 5 and 6) with the dihydroindenofluorene scaffold was prepared in 5 or 9 (octafluorinated dihydroindenofluorene) steps and their photophysical properties were determined. Rh-catalyzed intramolecular [2 + 2 + 2] cyclotrimerization of triyndiols, which were prepared in a modular fashion from simple starting material such as fluorinated haloarylcarbaldehydes, to the intermediate [n]helical dihydroindeno[2,1-c]fluorene-5,8-diols was the crucial synthetic step and proceeded with high efficacy. Their further transformation gave the desired selectively fluorinated bispirodihydroindeno[2,1-c]fluorenes. Their absorption and emission spectra were recorded. The fluorescence quantum yields were up to 92 % and the emission maxima were red-shifted in comparison with their non-fluorinated counterparts (386-413 nm).
Various polysubstituted benzofurans were reduced by using triethylsilane in trifluoracetic acid. 2,3-Dihydrobenzofurans or bibenzyl compounds were obtained in high yields, depending on the nature of the substituents at C2 and on the benzene ring of the core structure. A p-anisole substituent at C2 of benzofurans always led to the corresponding bibenzyls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.