Metabolic syndrome (MetS) and benign prostatic hyperplasia (BPH)/lower urinary tract symptoms (LUTS) are often associated. One of their common denominators is hypogonadism. However, testosterone supplementation is limited by concerns for potential prostatic side effects. The objective was to determine whether MetS-associated prostate alterations are prevented by testosterone supplementation. We used a previously described animal model of MetS, obtained by feeding male rabbits a high-fat diet (HFD) for 12 weeks. Subsets of HFD rabbits were treated with testosterone or with the farnesoid X receptor agonist INT-747. Rabbits fed a standard diet were used as controls. HFD-animals develop hypogonadism and all the MetS features: hyperglycemia, glucose intolerance, dyslipidemia, hypertension, and visceral obesity. In addition, HFD-animals show a prostate inflammation. Immunohistochemical analysis demonstrated that HFD-induced prostate fibrosis, hypoxia, and inflammation.The mRNA expression of several proinflammatory (IL8, IL6, IL1b, and TNFa), T lymphocyte (CD4, CD8, Tbet, Gata3, and ROR gt), macrophage (TLR2, TLR4, and STAMP2), neutrophil (lactoferrin), inflammation (COX2 and RAGE), and fibrosis/myofibroblast activation (TGFb, SM22a, aSMA, RhoA, and ROCK1/ROCK2) markers was significantly increased in HFD prostate. Testosterone, as well as INT-747, treatment prevented some MetS features, although only testosterone normalized all the HFD-induced prostate alterations. Interestingly, the ratio between testosterone and estradiol plasma level retains a significant, negative, association with all the fibrosis and the majority of inflammatory markers analyzed. These data highlight that testosterone protects rabbit prostate from MetS-induced prostatic hypoxia, fibrosis, and inflammation, which can play a role toward the development/progression of BPH/LUTS.
Progression of benign prostatic hyperplasia (BPH) involves chronic inflammation and immune dysregulation. Preclinical studies have demonstrated that prostate inflammation and tissue remodeling are exacerbated by hypogonadism and prevented by testosterone supplementation. We now investigated whether, in humans, hypogonadism was associated with more severe BPH inflammation and the in vitro effect of the selective androgen receptor agonist dihydrotestosterone (DHT) on cultures of stromal cells derived from BPH patients (hBPH). Histological analysis of inflammatory infiltrates in prostatectomy specimens from a cohort of BPH patients and correlation with serum testosterone level was performed. Even after adjusting for confounding factors, hypogonadism was associated with a fivefold increased risk of intraprostatic inflammation, which was also more severe than that observed in eugonadal BPH patients. Triggering hBPH cells by inflammatory stimuli (tumor necrosis factor a, lipopolysaccharide, or CD4 C T cells) induced abundant secretion of inflammatory/growth factors (interleukin 6 (IL6), IL8, and basic fibroblast growth factor (bFGF)). Co-culture of CD4 C T cells with hBPH cells induced secretion of Th1 inducer (IL12), Th1-recruiting chemokine (interferon g inducible protein 10, IP10), and Th2 (IL9)-and Th17 (IL17)-specific cytokines. Pretreatment with DHT inhibited NF-kB activation and suppressed secretion of several inflammatory/growth factors, with the most pronounced effects on IL8, IL6, and bFGF. Reduced inflammatory cytokine production by testosterone cells, an increase in IL10, and a significant reduction of testosterone cells proliferation suggested that DHT exerted a broad antiinflammatory effect on testosterone cells. In conclusion, our data demonstrate that DHT exerts an immune regulatory role on human prostatic stromal cells, inhibiting their potential to actively induce and/or sustain autoimmune and inflammatory responses.
In vitro treatment with tadalafil or vardenafil on hBPH reduced IL-8 secretion induced by either TNFα or metabolic factors, including oxidized low-density lipoprotein, oxLDL, to the same extent as a PDE5-insensitive PKG agonist Sp-8-Br-PET-cGMP. These effects were reverted by the PKG inhibitor KT5823, suggesting a cGMP/PKG-dependency. Treatment with tadalafil or vardenafil significantly suppressed oxLDL receptor (LOX-1) expression. Histological evaluation of anti-CD45 staining (CD45 score) in prostatectomy specimens of BPH patients showed a positive association with MetS severity. Reduced HDL-cholesterol and elevated triglycerides were the only MetS factors significantly associated with CD45 score. In the MetS cohort there was a significant lower CD45 score in the vardenafil-arm versus the placebo-one.
Our data provide the experimental evidences to support the multiple potentiality of PDE5 inhibitors as a useful therapeutic tool in LUTS.
We recently demonstrated that testosterone dosing ameliorated the metabolic profile and reduced visceral adipose tissue (VAT) in a high-fat diet (HFD)-induced rabbit model of metabolic syndrome (MetS). We studied the effects of HFD and in vivo testosterone dosing on VAT function and the adipogenic capacity of rabbit preadipocytes isolated from VAT of regular diet (RD), HFD, and testosterone-treated HFD rabbits. VAT was studied by immunohistochemistry, western blot, and RT-PCR. Isolated rPADs were exposed to adipocyte differentiating mixture (DIM) to evaluate adipogenic potential. Adipocyte size was significantly increased in HFD VAT compared with RD, indicating adipocyte dysfunction, which was normalized by testosterone dosing. Accordingly, perilipin, an anti-lipolytic protein, was significantly increased in HFD VAT, when compared with other groups. HFD VAT was hypoxic, while testosterone dosing normalized VAT oxygenation. In VAT, androgen receptor expression was positively associated with mRNA expression of GLUT4 (SLC2A4) (insulin-regulated glucose transporter) and STAMP2 (STEAP4) (androgen-dependent gene required for insulin signaling). In testosterone-treated HFD VAT, STAMP2 mRNA was significantly increased when compared with the other groups. Moreover, GLUT4 membrane translocation was significantly reduced in HFD VAT, compared with RD, and increased by testosterone. In DIM-exposed preadipocytes from HFD, triglyceride accumulation, adipocyte-specific genes, insulin-stimulated triglyceride synthesis, glucose uptake, and GLUT4 membrane translocation were reduced compared with preadipocytes from RD and normalized by in vivo testosterone dosing. In conclusion, testosterone dosing in a MetS animal model positively affects VAT functions. This could reflect the ability of testosterone in restoring insulin sensitivity in VAT, thus counteracting metabolic alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.