The control of Bactrocera oleae is fundamental to decreasing the significant production loss in olive cultivation. However, traditional containment based on the use of synthetic insecticides has been encountering serious limitations due to their negative effect on human health and the environment. Within the scope of integrated olive fly management, the use of products with repellency and oviposition deterrent activity might represent a more eco-friendly solution. In this study, we tested the oviposition deterrent activity of some commercial formulations already used in olive tree crops as fungicides (copper oxychloride, dodine, mancozeb, pyraclostrobin and difeconazole) and plant bio-stimulants (tannins, clay, flavonoids and a zinc-copper-citric acid biocomplex). The trials were conducted testing the oviposition behavior of mated olive fly females in both choice and no-choice assays. Our results showed that most of the substances have affected the ovipositional activity of the olive fly, except for difeconazole. Moreover, some products (copper oxychloride, flavonoids and tannins) have proven to differently influence the flies’ oviposition comparing the two tests. The repellent effect of these commercial products should be further studied to prove whether the repellency was due either to the active ingredient or to the co-formulants, and to assess their effect in the open field.
Wine quality is strongly affected by chemical composition and microbial population of grape must, which, in turn, are influenced by several post-harvest treatments, including grape withering. Different strategies have been suggested to manage the fermenting must microbiota, as it plays a central role in the outcomes of both spontaneous and guided fermentations. This study aimed at evaluating the impact of grape washing, SO2 addition, and selected starter culture inoculation on population dynamics, fermentation kinetics, and main oenological parameters in lab-scale trials, focusing on withered grapes usually used for Amarone production. Although grape washing treatment was effective in removing heavy metals and undesirable microorganisms from grape berry surface, inoculation of multi-starter cultures impacted more fermentation rates. Further, both grape washing and starter inoculation procedures had a remarkable impact on wine chemical characteristics, while 30 mg/L SO2 addition did not significantly affect the fermentation process. In summary, the best strategy in terms of limiting off-flavors and potentially reducing the need for SO2 addition in wine from withered grapes was the use of yeast starters, particularly mixed cultures composed by selected strains of Metschnikowia spp. and Saccharomyces cerevisiae. Application of a washing step before winemaking showed a potential to improve organoleptic characteristics of wine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.