BackgroundThe selective removal of grapevine leaves around berry clusters can improve the quality of ripening fruits by influencing parameters such as the berry sugar and anthocyanin content at harvest. The outcome depends strongly on the timing of defoliation, which influences the source–sink balance and the modified microclimate surrounding the berries. We removed the basal leaves from Vitis vinifera L. cv Sangiovese shoots at the pre-bloom and veraison stages, and investigated responses such as shoot growth, fruit morphology and composition compared to untreated controls. Moreover, we performed a genome-wide expression analysis to explore the impact of these defoliation treatments on berry transcriptome.ResultsWe found that pre-bloom defoliation improved berry quality traits such as sugar and anthocyanin content, whereas defoliation at veraison had a detrimental effect, e.g. less anthocyanin and higher incidence of sunburn damage. Genome-wide expression analysis during berry ripening revealed that defoliation at either stage resulted in major transcriptome reprogramming, which slightly delayed the onset of ripening. However, a closer investigation of individual gene expression profiles identified genes that were specifically modulated by defoliation at each stage, reflecting the uncoupling of metabolic processes such as flavonoid biosynthesis, cell wall and stress metabolism, from the general ripening program.ConclusionsThe specific transcriptional modifications we observed following defoliation at different time points allow the identification of the developmental or metabolic processes affected in berries thus deepening the knowledge of the mechanisms by which these agronomical practices impact the final berry ripening traits.
Anthocyanin levels decline in some red grape berry varieties ripened under high-temperature conditions, but the underlying mechanism is not yet clear. Here we studied the effects of two different temperature regimes, representing actual Sangiovese (Vitis vinifera L.) viticulture regions, on the accumulation of mRNAs and enzymes controlling berry skin anthocyanins. Potted uniform plants of Sangiovese were kept from veraison to harvest, in two plastic greenhouses with different temperature conditions. The low temperature (LT) conditions featured average and maximum daily air temperatures of 20 and 29 °C, respectively, whereas the corresponding high temperature (HT) conditions were 22 and 36 °C, respectively. The anthocyanin concentration at harvest was much lower in HT berries than LT berries although their profile was similar under both conditions. Under HT conditions, the biosynthesis of anthocyanins was suppressed at both the transcriptional and enzymatic levels, but peroxidase activity was higher. This suggests that the low anthocyanin content of HT berries reflects the combined impact of reduced biosynthesis and increased degradation, particularly the direct role of peroxidases in anthocyanin catabolism. Overexpression of VviPrx31 decreased anthocyanin contents in Petunia hybrida petals under heat stress condition. These data suggest that high temperature can stimulate peroxidase activity thus anthocyanin degradation in ripening grape berries.
Among environmental factors, temperature is the one that poses serious threats to viticulture in the present and future scenarios of global climate change. In this work, we evaluated the effects on berry ripening of two thermal regimes, imposed from veraison to harvest. Potted vines were grown in two air-conditioned greenhouses with High Temperature (HT) and Low Temperature (LT) regimes characterized by 26 and 21°C as average and 42 and 35°C as maximum air daily temperature, respectively. We conducted analyses of the main berry compositional parameters, berry skin flavonoids and berry skin transcriptome on HT and LT berries sampled during ripening. The two thermal conditions strongly differentiated the berries. HT regime increased sugar accumulation at the beginning of ripening, but not at harvest, when HT treatment contributed to a slight total acidity reduction and pH increase. Conversely, growing temperatures greatly impacted on anthocyanin and flavonol concentrations, which resulted as strongly reduced, while no effects were found on skin tannins accumulation. Berry transcriptome was analyzed with several approaches in order to identify genes with different expression profile in berries ripened under HT or LT conditions. The analysis of whole transcriptome showed that the main differences emerging from this approach appeared to be more due to a shift in the ripening process, rather than to a strong rearrangement at transcriptional level, revealing that the LT temperature regime could delay berry ripening, at least in the early stages. Moreover, the results of the in-depth screening of genes differentially expressed in HT and LT did not highlight differences in the expression of transcripts involved in the biosynthesis of flavonoids (with the exception of PAL and STS) despite the enzymatic activities of PALs and UFGT being significantly higher in LT than HT. This suggests only a partial correlation between molecular and biochemical data in our conditions and the putative existence of post-transcriptional and post-translational mechanisms playing significant roles in the regulation of flavonoid metabolic pathways and in particular of anthocyanins.
BackgroundCluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning.ResultsWe profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m2 leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed.ConclusionCluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.