The mechanism of the O((3)P) + CH3CCH reaction was investigated using a combined experimental/theoretical approach. Experimentally the reaction dynamics was studied using crossed molecular beams (CMB) with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy. Theoretically master equation (ME) simulations were performed on a potential energy surface (PES) determined using high-level ab initio electronic structure calculations. In this paper (II) the theoretical results are described and compared with experiments, while in paper (I) are reported and discussed the results of the experimental study. The PES was investigated by determining structures and vibrational frequencies of wells and transition states at the CASPT2/aug-cc-pVTZ level using a minimal active space. Energies were then determined at the CASPT2 level increasing systematically the active space and at the CCSD(T) level extrapolating to the complete basis set limit. Two separate portions of the triplet PES were investigated, as O((3)P) can add either on the terminal or the central carbon of the unsaturated propyne bond. Minimum energy crossing points (MECPs) between the triplet and singlet PESs were searched at the CASPT2 level. The calculated spin-orbit coupling constants between the T1 and S0 electronic surfaces were ∼25 cm(-1) for both PESs. The portions of the singlet PES that can be accessed from the MECPs were investigated at the same level of theory. The system reactivity was predicted integrating stochastically the one-dimensional ME using Rice-Ramsperger-Kassel-Marcus theory to determine rate constants on the full T1/S0 PESs, accounting explicitly for intersystem crossing (ISC) using the Landau-Zener model. The computational results are compared both with the branching ratios (BRs) determined experimentally in the companion paper (I) and with those estimated in a recent kinetic study at 298 K. The ME results allow to interpret the main system reactivity: CH3CCO + H and CH3 + HCCO are the major channels active on the triplet PES and are formed from the wells accessed after O addition to the terminal and central C, respectively; (1)CH3CH + CO and C2H3 + HCO are the major channels active on the singlet PES and are formed from the methylketene and acrolein wells after ISC. However, also a large number of minor channels (∼15) are active, so that the system reactivity is quite complicated. The comparison between computational and experimental BRs is quite good for the kinetic study, while some discrepancy with the CMB estimations suggests that dynamic non-ergodic effects may influence the system reactivity. Channel specific rate constants are calculated in the 300-2250 K and 1-30 bar temperature and pressure ranges. It is found that as the temperature increases the H abstraction reaction, whose contribution is negligible in the experimental conditions, increases in relevance, and the extent of ISC decreases from ∼80% at 300 K to less than 2% at 2250 K.
A new polymorph of succinic acid is an unusually challenging test for metastable polymorph prediction.
Enhanced sampling techniques such as umbrella sampling and metadynamics are now routinely used to provide information on how the thermodynamic potential, or free energy, depends on a small number of collective variables (CVs). The free energy surfaces that one extracts by using these techniques provide a simplified or coarse-grained representation of the configurational ensemble. In this work, we discuss how auxiliary variables can be mapped in CV space. We show that maps of auxiliary variables allow one to analyze both the physics of the molecular system under investigation and the quality of the reduced representation of the system that is encoded in a set of CVs. We apply this approach to analyze the degeneracy of CVs and to compute entropy and enthalpy surfaces in CV space both for conformational transitions in alanine dipeptide and for phase transitions in carbon dioxide molecular crystals under pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.