Background:Indirect fetal electrocardiography is preferable to direct fetal electrocardiography because of being noninvasive and is applicable also during the end of pregnancy, besides labor. Still, the former is strongly affected by noise so that even R-peak detection (which is essential for fetal heart-rate evaluations and subsequent processing procedures) is challenging. Some fetal studies have applied the Pan-Tompkins’ algorithm that, however, was originally designed for adult applications. Thus, this work evaluated the Pan-Tompkins’ algorithm suitability for fetal applications, and proposed fetal adjustments and optimizations to improve it. Method: Both Pan-Tompkins’ algorithm and its improved version were applied to the “Abdominal and Direct Fetal Electrocardiogram Database” and to the “Noninvasive Fetal Electrocardiography Database” of Physionet. R-peak detection accuracy was quantified by computation of positive-predictive value, sensitivity and F1 score. Results:When applied to “Abdominal and Direct Fetal Electrocardiogram Database”, the accuracy of the improved fetal Pan-Tompkins’ algorithm was significantly higher than the standard (positive-predictive value: 0.94 vs. 0.79; sensitivity: 0.95 vs. 0.80; F1 score: 0.94 vs. 0.79; P<0.05 in all cases) on indirect fetal electrocardiograms, whereas both methods performed similarly on direct fetal electrocardiograms (positive-predictive value, sensitivity and F1 score all close to 1). Improved fetal Pan-Tompkins’ algorithm was found to be superior to the standard also when applied to “Noninvasive Fetal Electrocardiography Database” (positive-predictive value: 0.68 vs. 0.55, P<0.05; sensitivity: 0.56 vs. 0.46, P=0.23; F1 score: 0.60 vs. 0.47, P=0.11).Conclusion:In indirect fetal electrocardiographic applications, improved fetal Pan-Tompkins’ algorithm is to be preferred over the standard, since it provides higher R-peak detection accuracy for heart-rate evaluations and subsequent processing.
Atrial fibrillation (AF) is a common cardiac disorder that can cause severe complications. AF diagnosis is typically based on the electrocardiogram (ECG) evaluation in hospitals or in clinical facilities. The aim of the present work is to propose a new artificial neural network for reliable AF identification in ECGs acquired through portable devices. A supervised fully connected artificial neural network (RSL_ANN), receiving 19 ECG features (11 morphological, 4 on F waves and 4 on heart-rate variability (HRV)) in input and discriminating between AF and non-AF classes in output, was created using the repeated structuring and learning (RSL) procedure. RSL_ANN was created and tested on 8028 (training: 4493; validation: 1125; testing: 2410) annotated ECGs belonging to the “AF Classification from a Short Single Lead ECG Recording” database and acquired with the portable KARDIA device by AliveCor. RSL_ANN performance was evaluated in terms of area under the curve (AUC) and confidence intervals (CIs) of the received operating characteristic. RSL_ANN performance was very good and very similar in training, validation and testing datasets. AUC was 91.1% (CI: 89.1–93.0%), 90.2% (CI: 86.2–94.3%) and 90.8% (CI: 88.1–93.5%) for the training, validation and testing datasets, respectively. Thus, RSL_ANN is a promising tool for reliable identification of AF in ECGs acquired by portable devices.
Sport Database is a collection of 126 cardiorespiratory data, acquired through wearable sensors from 81 subjects while practicing 10 different sports. Each cardiorespiratory dataset consists of demographic info (gender, age, weight, height, smoking habit, alcohol consumption and weekly training rate), cardiorespiratory signals (electrocardiogram, heart-rate series, RR-interval series and breathing-rate series) and training notes. Demographic info was collected by survey. Cardiorespiratory signals were acquired through the chest strap BioHarness 3.0 by Zephyr. Eventually, training notes including the sport-dependent training protocol, were manually annotated. Sport Database may be useful to support: 1) the investigation of cardiorespiratory system adaptations to different types of physical exercise; 2) the development of automatic algorithms finalized to real-time health monitoring of athletes and preventive identification of subjects at increased risk of sport-related sudden cardiac death; and, 3) clinical testing of the BioHarness 3.0 by Zephyr. Further acquisitions could involve other sports, other cardiovascular signals and/or parameters, data from different biological systems, and other acquisition devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.