It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma.
An increasing body of evidence highlights an intriguing interaction between microRNAs and transcriptional factors involved in determining cell fate, including the well known “genome guardian” p53. Here we show that miR-205, oncosuppressive microRNA lost in breast cancer, is directly transactivated by oncosuppressor p53. Moreover, evaluating miR-205 expression in a panel of cell lines belonging to the highly aggressive triple negative breast cancer (TNBC) subtype, which still lacks an effective targeted therapy and characterized by an extremely undifferentiated and mesenchymal phenotype, we demonstrated that this microRNA is critically down-expressed compared to a normal-like cell line. Re-expression of miR-205 where absent strongly reduces cell proliferation, cell cycle progression and clonogenic potential in vitro, and inhibits tumor growth in vivo, and this tumor suppressor activity is at least partially exerted through targeting of E2F1, master regulator of cell cycle progression, and LAMC1, component of extracellular matrix involved in cell adhesion, proliferation and migration.
Organization of cancer cells into endothelial-like cell-lined structures to support neovascularization and to fuel solid tumors is a hallmark of progression and poor outcome. In triple-negative breast cancer (TNBC), PDGFRb has been identified as a key player of this process and is considered a promising target for breast cancer therapy. Thus, we aimed at investigating the role of miRNAs as a therapeutic approach to inhibit PDGFRb-mediated vasculogenic properties of TNBC, focusing on miR-9 and miR-200. In MDA-MB-231 and MDA-MB-157 TNBC cell lines, miR-9 and miR-200 promoted and inhibited, respectively, the formation of vascular-like structures in vitro. Induction of endogenous miR-9 expression, upon ligand-dependent stimulation of PDGFRb signaling, promoted significant vascular sprouting of TNBC cells, in part, by direct repression of STARD13. Conversely, ectopic expression of miR-200 inhibited this sprouting by indirectly reducing the protein levels of PDGFRb through the direct suppression of ZEB1. Notably, in vivo miR-9 inhibition or miR-200c restoration, through either the generation of MDA-MB-231-stable clones or peritumoral delivery in MDA-MB-231 xenografted mice, strongly decreased the number of vascular lacunae. Finally, IHC and immunofluorescence analyses in TNBC specimens indicated that PDGFRb expression marked tumor cells engaged in vascular lacunae. In conclusion, our results demonstrate that miR-9 and miR-200 play opposite roles in the regulation of the vasculogenic ability of TNBC, acting as facilitator and suppressor of PDGFRb, respectively. Moreover, our data support the possibility to therapeutically exploit miR-9 and miR-200 to inhibit the process of vascular lacunae formation in TNBC. Cancer Res; 76(18); 5562-72. Ó2016 AACR.
Triple negative breast cancer (TNBC) is a very aggressive subgroup of breast carcinoma, still lacking specific markers for an effective targeted therapy and with a poorer prognosis compared to other breast cancer subtypes. In this study we investigated the possibility that TNBC cells contribute to the establishment of tumor vascular network by the process known as vasculogenic mimicry, through endothelial cell differentiation. Vascular-like functional properties of breast cancer cell lines were investigated in vitro by tube formation assay and in vivo by confocal microscopy, immunofluorescence or immunohistochemistry on frozen tumor sections. TNBCs express endothelial markers and acquire the ability to form vascular-like channels in vitro and in vivo, both in xenograft models and in human specimens, generating blood lacunae surrounded by tumor cells. Notably this feature is significantly associated with reduced disease free survival. The impairment of the main pathways involved in vessel formation, by treatment with inhibitors (i.e. Sunitinib and Bevacizumab) or by siRNA-mediating silencing, allowed the identification of PDGFRβ and FGFR2 as relevant players in this phenomenon. Inhibition of these tyrosine kinase receptors negatively affects vascular lacunae formation and significantly inhibits TNBC growth in vivo. In summary, we demonstrated that TNBCs have the ability to form vascular-like channels in vitro and to generate blood lacunae lined by tumor cells in vivo. Moreover, this feature is associated with poor outcome, probably contributing to the aggressiveness of this breast cancer subgroup. Finally, PDGFRβ and FGFR2-mediated pathways, identified as relevant in mediating this characteristic, potentially represent valid targets for a specific therapy of this breast cancer subgroup.
CDCP1, a transmembrane noncatalytic receptor, the expression of which has been associated with a poor prognosis in certain epithelial cancers, was found to be expressed in highly aggressive triple-negative breast cancer (TNBC) cell models, in which it promoted aggressive activities—ie, migration, invasion, anchorage-independent tumor growth, and the formation of vascular-like structures in vitro. By immunohistochemical (IHC) analysis of 100 human TNBC specimens, CDCP1 was overexpressed in 57% of samples, 38% of which exhibited a gain in CDCP1 copy number by fluorescence in situ hybridization (FISH). CDCP1 positivity was significantly associated between FISH and IHC. CDCP1 expression and gains in CDCP1 copy number synergized with nodal (N) status in determining disease-free and distant disease-free survival. The hazard ratios (HRs) of the synergies between CDCP1 positivity by IHC and FISH and lymph node positivity in predicting relapse did not differ significantly, indicating that CDCP1 overexpression in human primary TNBCs, regardless of being driven by gains in CDCP1, is for a critical factor in the progression of N-positive TNBCs. Thus, CDCP1 is a novel marker of the most aggressive N-positive TNBCs and a potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.