Malignant gliomas, the most frequent primary brain tumors, are characterized by a dismal prognosis. Reliable biomarkers complementary to neuroradiology in the differential diagnosis of gliomas and monitoring for post-surgical progression are unmet needs. Altered expression of several microRNAs in tumour tissues from patients with gliomas compared to normal brain tissue have been described, thus supporting the rationale of using microRNA-based biomarkers. Although different circulating microRNAs were proposed in association with gliomas, they have not been introduced into clinical practice so far. Blood samples were collected from patients with high and low grade gliomas, both before and after surgical resection, and the expression of miR-21, miR-222 and miR-124-3p was measured in exosomes isolated from serum. The expression levels of miR-21, miR-222 and miR-124-3p in serum exosomes of patients with high grade gliomas were significantly higher than those of low grade gliomas and healthy controls and were sharply decreased in samples obtained after surgery. The analysis of miR-21, miR-222 and miR-124-3p in serum exosomes of patients affected by gliomas can provide a minimally invasive and innovative tool to help the differential diagnosis of gliomas at their onset in the brain and predict glioma grading and non glial metastases before surgery.
Tumor microenvironment in carcinomas recruits mesenchymal cells with an abnormal proangiogenic and invasive phenotype. It is not clear whether mesenchymal tumor cells (MTCs) derive from the activation of mature fibroblasts or from their stem cell precursors. However, stromal cell activation in tumors resembles in several aspects the mesenchymal rearrangement which normally occurs during reparative processes such as wound healing. Mesenchymal stem cells (MSCs) play a crucial role in developmental and reparative processes and have extraordinary proangiogenic potential, on the basis of which they are thought to show great promise for the treatment of ischemic disorders. Here, we show that MTCs have proangiogenic potential and that they share the transcriptional expression of the best-known proangiogenic factors with MSCs. We also found that MTCs and MSCs have the same molecular signature for stemness-related genes, and that when co-implanted with cancer cells in syngeneic animals MSCs determine early tumor appearance, probably by favoring the angiogenic switch. Our data (1) reveal crucial aspects of the proangiogenic phenotype of MTCs, (2) strongly suggest their stem origin and (3) signal the risk of therapeutic use of MSCs in tumorpromoting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.