Undifferentiated cells and embryos express high levels of endogenous non-telomerase reverse transcriptase (RT) of retroposon/retroviral origin. We previously found that RT inhibitors modulate cell growth and differentiation in several cell lines. We have now sought to establish whether high levels of RT activity are directly linked to cell transformation. To address this possibility, we have employed two different approaches to inhibit RT activity in melanoma and prostate carcinoma cell lines: pharmacological inhibition by two characterized RT inhibitors, nevirapine and efavirenz, and downregulation of expression of RT-encoding LINE-1 elements by RNA interference (RNAi). Both treatments reduced proliferation, induced morphological differentiation and reprogrammed gene expression. These features are reversible upon discontinuation of the anti-RT treatment, suggesting that RT contributes to an epigenetic level of control. Most importantly, inhibition of RT activity in vivo antagonized tumor growth in animal experiments. Moreover, pretreatment with RT inhibitors attenuated the tumorigenic phenotype of prostate carcinoma cells inoculated in nude mice. Based on these data, the endogenous RT can be regarded as an epigenetic regulator of cell differentiation and proliferation and may represent a novel target in cancer therapy.
Transformed cells express high levels of non-telomeric reverse-transcriptase (RT) activity of retrotransposon and endogenous retrovirus origin. We previously reported that RT inhibition, either pharmacological or through transient silencing of RT-encoding LINE-1 (L1) elements by RNA interference (RNAi), reduced proliferation, induced differentiation and reprogrammed gene expression in human tumorigenic cell lines. Moreover, the antiretroviral drug efavirenz antagonized tumor progression in animal models in vivo. To get insight into the role of retroelements in tumorigenesis, we have now produced two cell lines derived from A-375 melanoma, in which the expression of either L1 retrotransposon, or HERV-K endogenous retrovirus, was stably suppressed by RNAi. Compared to the parental A-375 cell line, cells with stably interfered L1 expression show a lower proliferation rate, a differentiated morphology and lower tumorigenicity when inoculated in nude mice. L1 silencing modulates expression of several genes and, unexpectedly, also downregulates HERV-K expression. In HERV-K interfered cells, instead, L1 expression was unaffected, and cell proliferation and differentiation remained unchanged compared to parental A-375 cells. In vivo, however, their tumorigenic potential was found to be reduced after inoculation in nude mice. These results suggest that L1 and HERV-K play specific and distinct roles in cell transformation and tumor progression.
Endogenous, nontelomeric reverse transcriptase (RT) is encoded by two classes of repeated elements: retrotransposons and endogenous retroviruses. Expression of RT-coding genes is generally repressed in differentiated nonpathological tissues, yet is active in the mammalian germ line, embryonic tissues and tumor cells. Nevirapine is a non-nucleoside RT inhibitor with a well-characterized inhibitory activity on RT enzymes of retroviral origin. Here, we show that nevirapine is also an effective inhibitor of the endogenous RT in murine and human cell lines. In addition, progenitor and transformed cells undergo a significant reduction in the rate of cell growth upon exposure to nevirapine. This is accompanied by the onset of differentiation, as depicted in F9 and C2C7 progenitor cells cultures in which nevirapine triggers the expression of differentiation-specific markers. Consistent with this, an extensive reprogramming of cell cycle gene expression was depicted in nevirapine-treated F9 cultures. Furthermore, nevirapine exposure rescued the differentiation block present in acute myeloid leukemia (AML) cell lines and primary blasts from two AML patients, as indicated by morphological, functional and immunophenotypic assays. The finding that an RT inhibitor can modulate cell proliferation and differentiation suggests that RT may represent a novel target in the development of therapeutical approaches to neoplasia.
In higher eukaryotes, reverse transcriptase (RT) activities are encoded by a variety of endogenous retroviruses and retrotransposable elements. We previously found that mouse preimplantation embryos are endowed with an endogenous RT activity. Inhibition of that activity by the non nucleosidic inhibitor nevirapine or by microinjection of anti-RT antibody caused early embryonic developmental arrest. Those experiments indicated that RT is required for early development, but did not identify the responsible coding elements. We now show that microinjection of morpholino-modified antisense oligonucleotides targeting the 5' end region of active LINE-1 retrotransposons in murine zygotes irreversibly arrests preimplantation development at the two- and four-cell stages; the overall level of functional RT is concomitantly downregulated in arrested embryos. Furthermore, we show that the induction of embryo developmental arrest is associated with a substantial reprogramming of gene expression. Together, these results support the conclusion that expression of LINE-1 retrotransposons is required for early embryo preimplantation development.
LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions.We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences.The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.