Bifidobacterium aesculapii sp. nov., from the faeces of the baby common marmoset (Callithrix jacchus) Six Gram-positive-staining, microaerophilic, non-spore-forming, fructose-6-phosphate phosphoketolase-positive bacterial strains with a peculiar morphology were isolated from faecal samples of baby common marmosets (Callithrix jacchus). Cells of these strains showed a morphology not reported previously for a bifidobacterial species, which resembled a coiled snake, always coiled or ring shaped or forming a 'Y' shape. Strains MRM 3/1 T and MRM 4/2 were chosen as representative strains and characterized further. The bacteria utilized a wide range of carbohydrates and produced urease. Glucose was fermented to acetate and lactate. Strain MRM 3/1 T showed a peptidoglycan type unique among members of the genus Bifidobacterium. The DNA base composition was 64.7 mol% G+C. Almost-complete 16S rRNA, hsp60, clpC and rpoB gene sequences were obtained and phylogenetic relationships were determined. Comparative analysis of 16S rRNA gene sequences showed that strains MRM 3/1 T and MRM 4/2 had the highest similarities to Bifidobacterium scardovii DSM 13734 T (94.6 %) and Bifidobacterium stellenboschense DSM 23968 T (94.5 %). Analysis of hsp60 showed that both strains were closely related to B. stellenboschense DSM 23968 T (97.5 % similarity); however, despite this high degree of similarity, our isolates could be distinguished from B. stellenboschense DSM 23968 T by low levels of DNA-DNA relatedness (30.4 % with MRM 3/1 T ). Strains MRM 3/1 T and MRM 4/2 were located in an actinobacterial cluster and were more closely related to the genus Bifidobacterium than to other genera in the family Bifidobacteriaceae. On the basis of these results, strains MRM 3/1 T and MRM 4/2 represent a novel species within the genus Bifidobacterium, for which the name Bifidobacterium aesculapii sp. nov. is proposed; the type strain is MRM 3/1 T (5DSM 26737 T 5JCM 18761 T ).
The European Water Framework (WFD) establishes a framework for the protection and the monitoring condition of all natural superficial waters of the member States. The Italian Legislative Decree n. 156/2006 implements the WFD establishing a monitoring system which foresees a detailed detection of several physical, chemical and microbiological parameters in order to assess the qualitative status of the water body. This study reports the freshwater quality in the Reno river basin (North Italy) from 2003 to 2011. The Reno superficial water was classified as "good" in the mountain stations and at the closed basin while in all the other stations of the Po plain the quality was from "mediocre" to "poor". The decrease of water quality was due to the flowing of artificial canals that collect discharges the wastewater of sewage treatment plants, drainage and run-off from the urban, industrial and agricultural lands. In spring-summer 2011, characterized by severe drought, a study on the distribution of pollutants and nutrients in water of the Reno river and its tributaries highlight the impact of highway (Via Emilia) that closes the mountain basin of water courses. Along this street cities and industrial and craft have developed, increasing discharges of pollutants and nutrients in rivers. An increase of metals and nutrients was found from upstream to downstream, furthermore the concentration of the microbiological faecal indicators were two to three times higher than those determined in the water upstream of urban/industrial settlements. The thresholds of Italian Law for Hg and Pb were exceeding in all most rivers. The sediments analysis was also performed because they can be considered a sink and/or source for pollutants. In many monitoring sites the metals concentrations was higher than the thresholds of Italia Low (data not shown), but the availability of these metals was tested with mixtures of different strength extracting (EDTA, DTPA and water). The coefficient of partition solid/water (Kd) was calculated to evaluate the metals affinity to be in the aqueous phase and it increase as following Cr > Mn > Ni > Pb > Zn > Cu > Cd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.