Hybrid copper matrix composites containing 5 wt.% of titanium dioxide and varying graphite content (0 wt.%, 2 wt.% and 4 wt.%) were synthesized using powder metallurgy. Metallurgical studies were carried out to examine the presence and distribution of reinforcements in the copper matrix. To investigate the forming behavior of the sintered composite preforms, cold upset tests were conducted from which the true axial stress, the true hoop stress, the true hydrostatic stress and the true effective stress were evaluated and their relationship with the true axial strain was analyzed and presented. It is observed that the increase in addition of weight percentage of graphite into the copper matrix increases the true axial, the true hoop, the true hydrostatic and the true effective stresses. The variation of hardness, strength coefficient and strain hardening with respect to the addition of graphite content is also evaluated and reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.