A number of sequencing studies identified the prognostic impact of somatic mutations in myelodysplastic syndrome (MDS). However the majority of them focused on methylation regulation, apoptosis and proliferation genes. Despite the number of experimental studies published on the role of micro-RNA processing and checkpoint genes in the development of MDS, the clinical data about mutational landscape in these genes is limited. We performed a pilot study which evaluated mutational burden in these genes and their association with common MDS mutations. High prevalence of mutations was observed in the genes studied: 54% had mutations in DICER1, 46% had mutations in LAG3, 20% in CTLA4, 23% in B7-H3, 17% in DROSHA, 14% in PD-1 and 3% in PD-1L. Cluster analysis that included these mutations along with mutations in ASXL1, DNMT3A, EZH2, IDH1, RUNX1, SF3B1, SRSF2, TET2 and TP53 effectively predicted overall survival in the study group (HR 4.2, 95%CI 1.3–13.6, p = 0.016). The study results create the rational for incorporating micro-RNA processing and checkpoint genes in the sequencing panels for MDS and evaluate their role in the multicenter studies.
There is evidence that relapses of acute myeloid leukemia (AML) are closely related to heterogeneous population of leukemic precursors. At least, two classes of the leukemia-initiating cells (LIC) may be discerned, according to recent experimental studies with hematopoietic cell transplants to immunodeficient mice. The main class of LICs is presented by immature precursors with CD34 + CD38immunophenotype which, in turn, are capable of selective expression of BAALC gene. The second class of LICs is presented by relatively mature precursors with more differentiated immunophenotypes. According to indirect findings, they are able of WT1 gene expression, along with blast cells. Since both BAALC and WT1 mRNAs may be quantitatively evaluated by means of standardized quantitative polymerase reaction in real time (qRT-PCR), this approach may be effective for specifying the mechanisms of relapses and resistance to therapy in AML patients. The aim of this work was to perform simultaneous dynamic evaluation of BAALC and WT1 genes expressions along with determination of blast numbers in the tested bone marrow samples in 14 AML patients treated at our Center with Gemtuzumab ozogamicin (GO, Mylotarg), which was combined with high-dose chemotherapy (ChT), followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our preliminary results are as follows: a) superior 3-year overall survival (OS) in general group of patients with normal or nearly-normal karyotypes, and FLT3-mutated AML variants as compared to those with more complex karyotypes and EVI1 gene overexpression (85.7% vs 16.7%; p=0.032); b) highly sensitive response of immature BAALC-expressing precursors to combined ChT and GO treatment; c) hypothetical participation of some mature precursors, along with blast cells, in WT1 gene expression; d) real evidence for switching hematopoietic regulation from immature BAALC-expressing precursors to more mature WT1-expressing progeny. These results suggest diagnostic utility of combined BAALC/ WT1/blast counts panel for quantitative studies and assessment of distinct precursors in AML progression and emergence of relapses.
The presented data are showing the crucial role and great prognostic significance of BAALC-expressing leukemic precursors in origin and development of posttransplant relapses (PTR) in acute myeloid leukemia patients with different cytological variants. For evidence simultaneous serial measurements of BAALC and WT1 transcript copy numbers by means of quantitative real time polymerase chain reaction were used at diagnosis, before conditioning regimen as well as at PTR in 50 patients treated with allogeneic hematopoietic stem cell transplantation (alloHSCT). Thirty-eight of them were adults and twelve pediatric patients aged 1-60 years (median – 25.8 years). It was shown, that BAALC gene overexpression to be presented in all studied cytological and being combined with increased level of WT1 expression at PTR in most of them. This combination was prognostically poor since it is largely associated with increased cumulative incidence of PTR (p<0.0001), and shortened event free (p<0.0001) and overall survival (p=0.002).
Osteopetrosis is a group of rare inheritable disorders of the skeleton characterized by increased bone density. The disease is remarkably heterogeneous in clinical presentation and often misdiagnosed. Therefore, genetic testing and molecular pathogenicity analysis are essential for precise diagnosis and new targets for preventive pharmacotherapy. Mutations in the CLCN7 gene give rise to the complete spectrum of osteopetrosis phenotypes and are responsible for about 75% of cases of autosomal dominant osteopetrosis. In this study, we report the identification of a novel variant in the CLCN7 gene in a patient diagnosed with osteopetrosis and provide evidence for its significance (likely deleterious) based on extensive comparative genomics, protein sequence and structure analysis. A set of automated bioinformatics tools used to predict consequences of this variant identified it as deleterious or pathogenic. Structure analysis revealed that the variant is located at the same “hot spot” as the most common CLCN7 mutations causing osteopetrosis. Deep phylogenetic reconstruction showed that not only Leu614Arg, but any non-aliphatic substitutions in this position are evolutionarily intolerant, further supporting the deleterious nature of the variant. The present study provides further evidence that reconstructing a precise evolutionary history of a gene helps in predicting phenotypical consequences of variants of uncertain significance.
Osteopetrosis is a group of rare inheritable disorders of the skeleton characterized by increased bone density. The disease is remarkably heterogeneous in clinical presentation and often misdiagnosed. Therefore, genetic testing and molecular pathogenicity analysis are essential for precise diagnosis and new targets for preventive pharmacotherapy. Mutations in the CLCN7 gene give rise to the complete spectrum of osteopetrosis phenotypes and are responsible for about 75% of cases of autosomal dominant osteopetrosis. In this study, we report the identification of a novel variant in the CLCN7 gene in a patient diagnosed with osteopetrosis and provide evidence for its significance (likely deleterious) based on extensive comparative genomics, protein sequence and structure analysis. A set of automated bioinformatics tools used to predict consequences of this variant identified it as deleterious or pathogenic. Structure analysis revealed that the variant is located at the same “hot spot” as the most common CLCN7 mutations causing osteopetrosis. Deep phylogenetic reconstruction showed that not only Leu614Arg, but any non-aliphatic substitutions in this position are evolutionarily intolerant, further supporting the deleterious nature of the variant. The present study provides further evidence that reconstructing a precise evolutionary history of a gene helps predicting phenotypical consequences of variants of uncertain significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.