Heart disease is a leading cause of death in newborn children and in adults. Efforts to promote cardiac repair through the use of stem cells hold promise but typically involve isolation and introduction of progenitor cells. Here, we show that the G-actin sequestering peptide thymosin beta4 promotes myocardial and endothelial cell migration in the embryonic heart and retains this property in postnatal cardiomyocytes. Survival of embryonic and postnatal cardiomyocytes in culture was also enhanced by thymosin beta4. We found that thymosin beta4 formed a functional complex with PINCH and integrin-linked kinase (ILK), resulting in activation of the survival kinase Akt (also known as protein kinase B). After coronary artery ligation in mice, thymosin beta4 treatment resulted in upregulation of ILK and Akt activity in the heart, enhanced early myocyte survival and improved cardiac function. These findings suggest that thymosin beta4 promotes cardiomyocyte migration, survival and repair and the pathway it regulates may be a new therapeutic target in the setting of acute myocardial damage.
Background-Prolonged myocardial ischemia results in cardiomyocyte loss despite successful revascularization. We have reported that retrograde application of embryonic endothelial progenitor cells (eEPCs) provides rapid paracrine protection against ischemia-reperfusion injury. Here, we investigated the role of thymosin β4 (Tβ4) as a mediator of eEPC-mediated cardioprotection.
Hypoxic heart disease is a predominant cause of disability and death worldwide. Since adult mammalian hearts are incapable of regeneration after hypoxia, attempts to modify this deficiency are critical. As demonstrated in zebrafish, recall of the embryonic developmental program may be the key to success. Because thymosin β4 (TB4) is beneficial for myocardial cell survival and essential for coronary development in embryos, we hypothesized that it reactivates the embryonic developmental program and initiates epicardial progenitor mobilization in adult mammals. We found that TB4 stimulates capillary-like tube formation of adult coronary endothelial cells and increases embryonic endothelial cell migration and proliferation in vitro. The increase of blood vessel/epicardial substance (Bves) expressing cells accompanied by elevated VEGF, Flk-1, TGF-β, FGFR-2, FGFR-4, FGF-17 and β-Catenin expression and increase of Tbx-18 and Wt-1 positive myocardial progenitors suggested organ-wide recall of the embryonic program in the adult epicardium. TB4 also positively regulated the expression and phosphorylation of myristoylated alanine-rich C-kinase substrate (Marcks), a direct substrate and indicator of protein kinase C (PKC) activity in vitro and in vivo. PKC inhibition significantly reduced TB4 initiated epicardial thickening, capillary growth and the number of myocardial progenitors. Our results demonstrate that TB4 is the first known molecule capable of organ-wide activation of the embryonic coronary developmental program in the adult mammalian heart after systemic administration and that PKC plays a significant role in the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.