This work demonstrates new evidence of the efficient destruction and mineralization of an emergent organic pollutant using UV-A and titanium nanosized catalysts. The target compound considered in this work is the primary metabolite of a lipid regulator drug, clofibrate, identified in many studies as refractory during conventional wastewater treatment. The photocatalytic performance study was carried out in batch mode at laboratory scale, in aqueous suspension. Kinetic data showed that titanium dioxide P25 Aeroxide® exhibits the highest photocatalytic efficiency compared to the other investigated catalysts. Pollutant degradation and mineralization efficiencies strongly increased when decreasing the initial substrate concentration. Target molecules oxidized faster when the catalyst load increased, and the mineralization was enhanced under acidic conditions: 92% of mineralization was achieved at pH 4 after 190 min of reaction. Radical quenching assays confirmed that HO• and (
h
vb
+
)
were the reactive oxygen species involved in the photocatalytic oxidation of the considered pollutant. In addition, further results revealed that the removal efficiency decreased in real water matrices. Finally, data collected through a series of phytotoxicity tests demonstrated that the photocatalytic process considerably reduces the toxicity of the treated solutions, confirming the process’s effectiveness in the removal of persistent and biorefractory emergent organic water pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.