The entorhinal cortex (EC) provides the predominant excitatory drive to the hippocampal CA1 and subicular neurones in chronic epilepsy. Here we analysed the effects of one-sided lateral EC (LEC) and temporoammonic (alvear) path lesion on the development and properties of 4-aminopyridine-induced seizures. Electroencephalography (EEG) analysis of freely moving rats identified that the lesion increased the latency of the hippocampal seizure significantly and decreased the number of brief convulsions. Seizure-induced neuronal c-fos expression was reduced in every hippocampal area following LEC lesion. Immunocytochemical analysis 40 days after the ablation of the LEC identified sprouting of cholinergic and calretinin-containing axons into the dentate molecular layer. Region and subunit specific changes in the expression of ionotropic glutamate receptors (iGluRs) were identified. Although the total amount of AMPA receptor subunits remained unchanged, GluR1 flop displayed a significant decrease in the CA1 region. An increase in NR1 and NR2B N-methyl-Daspartate (NMDA) receptor subunits and KA-2 kainate receptor subunit was identified in the deafferented layers of the hippocampus. These results further emphasize the importance of the lateral entorhinal area in the spread and regulation of hippocampal seizures and highlight the potential role of the rewiring of afferents and rearrangement of iGluRs in the dentate gyrus in hippocampal convulsive activity.
An earlier study demonstrated changes in synaptic efficacy and seizure susceptibility in adult rat brain slices following extremely low-frequency magnetic field (ELF-MF) exposure. The developing embryonic and early postnatal brain may be even more sensitive to MF exposure. The aim of the present study was to determine the effects of a long-term ELF-MF (0.5 and 3 mT, 50 Hz) exposure on synaptic functions in the developing brain. Rats were treated with chronic exposure to MF during two critical periods of brain development, i.e. in utero during the second gestation week or as newborns for 7 days starting 3 days after birth, respectively. Excitability and plasticity of neocortical and hippocampal areas were tested on brain slices by analyzing extracellular evoked field potentials. We demonstrated that the basic excitability of hippocampal slices (measured as amplitude of population spikes) was increased by both types of treatment (fetal 0.5 mT, newborn 3 mT). Neocortical slices seemed to be responsive mostly to the newborn treatment, the amplitude of excitatory postsynaptic potentials was increased. Fetal ELF-MF exposure significantly inhibited the paired-pulse depression (PPD) and there was a significant decrease in the efficacy of LTP (long-term potentiation induction) in neocortex, but not in hippocampus. On the other hand, neonatal treatment had no significant effect on plasticity phenomena. Results demonstrated that ELF-MF has significant effects on basic neuronal functions and synaptic plasticity in brain slice preparations originating from rats exposed either in fetal or in newborn period.
The effects of electromagnetic fields (EMFs) on living organisms are recently a focus of scientific interest, as they may influence everyday life in several ways. Although the neural effects of EMFs have been subject to a considerable number of investigations, the results are difficult to compare since dissimilar exposure protocols have been applied on different preparations or animals. In the present series of experiments, whole rats or excised rat brain slices were exposed to a reference level-intensity (250-500 microT, 50 Hz) EMF in order to examine the effects on the synaptic efficacy in the central nervous system. Electrophysiological investigation was carried out ex vivo, on neocortical and hippocampal slices; basic synaptic functions, short- and long-term plasticity and seizure susceptibility were tested. The most pronounced effect was a decrease in basic synaptic activity in slices treated directly ex vivo observed as a diminution in amplitude of evoked potentials. On the other hand, following whole-body exposure an enhanced short- and long-term synaptic facilitation in hippocampal slices and increased seizure susceptibility in neocortical slices was also observed. However, these effects seem to be transient. We can conclude that ELF-EMF exposure exerts significant effects on synaptic activity, but the overall changes may strongly depend on the synaptic structure and neuronal network of the affected region together with the specific spatial parameters and constancy of EMF.
Special red cells were found on the adaxial surface of tertiary pulvini of Mimosa pudica and experiments performed to determine the origin and function of these cells. Using anatomical (light, scanning electron and transmission electron microscopy) and electrophysiological techniques, we have demonstrated that these red cells are real mechanoreceptor cells. They can generate receptor potential following mechanical stimuli and they are in connection with excitable motor cells (through plasmodesmata). We also provide evidence that these red cells are derived from stomatal subsidiary cells and not guard cells. As histochemical studies show red cells contain tannin, which is important in development of action potentials and movements of plants. These cells could be one of unidentified mechanoreceptors of mimosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.