There is strong evidence that commissural interneurons, neurons with axons that extend to the contralateral side of the spinal cord, play an important role in the coordination of left/right alternation during locomotion. In this study we investigated the projections of commissural interneurons to motor neurons and other commissural interneurons on the other side of the spinal cord in neonatal rats. To establish whether there are direct contacts between axons of commissural interneurons and motor neurons, we carried out two series of experiments. In the first experiment we injected biotinylated dextran amine (BDA) into the lateral motor column to retrogradely label commissural interneurons that may have direct projections to motor neurons. Stained neurons were recovered in the ventromedial areas of the contralateral gray matter in substantial numbers. In the second experiment BDA was injected into the ventromedial gray matter on one side of the lumbar spinal cord, whereas motor neurons were simultaneously labeled on the opposite side by applying biocytin onto the ventral roots. BDA injections into the ventromedial gray matter labeled a strong axon bundle that arose from the site of injection, crossed the midline in the ventral commissure, and extensively arborized in the contralateral ventral gray matter. Many of these axons made close appositions with dendrites and somata of motor neurons and also with commissural interneurons retrogradely labeled with BDA. The results suggest that commissural interneurons may establish monosynaptic contacts with motor neurons on the opposite side of the spinal cord. Our findings also indicate that direct reciprocal connections between commissural interneurons on the two sides of the spinal cord may also exist.
Our earlier findings revealed that interleukin-1 receptor type-1 (IL-1R1) was overexpressed in spinal neurons, and IL-1R1-deficient mice showed significant attenuation of thermal and mechanical allodynia during the course of the Complete Freund adjuvant (CFA)-induced persistent pain model. In the present study, we found that a ligand of IL-1R1, termed interleukin-1β (IL-1β), is also significantly overexpressed at the peak of mechanical pain sensitivity in the CFA-evoked pain model. Analysis of cellular distribution and modeling using IMARIS software showed that in the lumbar spinal dorsal horn, IL-1β is significantly elevated by astrocytic expression. Maturation of IL-1β to its active form is facilitated by the formation of the multiprotein complex called inflammasome; thus, we tested the expression of NOD-like receptor proteins (NLRPs) in astrocytes. At the peak of mechanical allodynia, we found expression of the NLRP2 inflammasome sensor and its significantly elevated co-localization with the GFAP astrocytic marker, while NLRP3 was moderately present and NLRP1 showed total segregation from the astrocytic profiles. Our results indicate that peripheral CFA injection induces NLRP2 inflammasome and IL-1β expression in spinal astrocytes. The release of mature IL-1β can contribute to the maintenance of persistent pain by acting on its neuronally expressed receptor, which can lead to altered neuronal excitability.
Extracellular matrix (ECM) became an important player over the last few decades when studying the plasticity and regeneration of the central nervous system. In spite of the established role of ECM in these processes throughout the central nervous system (CNS), only few papers were published on the ECM of the olfactory system, which shows a lifelong plasticity, synaptic remodeling and postnatal neurogenesis. In the present study, we have described the localization and organization of major ECM molecules, the hyaluronan, the lecticans, tenascin-R and HAPLN1 link protein in the olfactory bulb (OB) of the rat. We detected all of these molecules in the OB showing differences in the molecular composition, staining intensity, and organization of ECM between the layers and in some cases within a single layer. One of the striking features of ECM staining pattern in the OB was that the reactions are shown dominantly in the neuropil, the PNNs were found rarely and they exhibited thin or diffuse appearance Similar organization was shown in human and mice samples. As the PNN limits the neural plasticity, its rare appearance may be related to the high degree of plasticity in the OB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.