Prostatic acid phosphatase (PAP) is currently evaluated as a target for vaccine immunotherapy of prostate cancer. This is based on the previous knowledge about secretory PAP and its high prostatic expression. We describe a novel PAP spliced variant mRNA encoding a type I transmembrane (TM) protein with the extracellular NH 2
The molecular mechanisms underlying prostate carcinogenesis are poorly understood. Prostatic acid phosphatase (PAP), a prostatic epithelial secretion marker, has been linked to prostate cancer since the 1930's. However, the contribution of PAP to the disease remains controversial. We have previously cloned and described two isoforms of this protein, a secretory (sPAP) and a transmembrane type-I (TMPAP). The goal in this work was to understand the physiological function of TMPAP in the prostate. We conducted histological, ultra-structural and genome-wide analyses of the prostate of our PAP-deficient mouse model (PAP−/−) with C57BL/6J background. The PAP−/− mouse prostate showed the development of slow-growing non-metastatic prostate adenocarcinoma. In order to find out the mechanism behind, we identified PAP-interacting proteins byyeast two-hybrid assays and a clear result was obtained for the interaction of PAP with snapin, a SNARE-associated protein which binds Snap25 facilitating the vesicular membrane fusion process. We confirmed this interaction by co-localization studies in TMPAP-transfected LNCaP cells (TMPAP/LNCaP cells) and in vivo FRET analyses in transient transfected LNCaP cells. The differential gene expression analyses revealed the dysregulation of the same genes known to be related to synaptic vesicular traffic. Both TMPAP and snapin were detected in isolated exosomes. Our results suggest that TMPAP is involved in endo-/exocytosis and disturbed vesicular traffic is a hallmark of prostate adenocarcinoma.
It has been suggested that oviductal proteins could be involved in modulating sperm function and fertilizing ability through as yet not well-known mechanisms. The objective of the study was to investigate the pattern of proteins secreted by human oviductal tissue cultures and the effects of their conditioned media (CM) on sperm function under capacitating conditions and in phosphate buffered saline (PBS). In addition, interactions between spermatozoa and oviductal proteins were examined. The oviductal tissue was obtained from pre-menopausal patients scheduled for hysterectomies because of uterine fibromyoma. Normozoospermic semen samples were obtained from healthy donors. Cultures of human fallopian tissue were carried out and CM were collected for analysis of the de novo production of [35S]-methionine-labelled proteins by SDS-PAGE. Motile spermatozoa were incubated under capacitating conditions and in PBS, with or without CM, and sperm fertilizing ability was assessed by ionophore-induced acrosome reaction (AR) and the acrosome reaction to ionophore challenge (ARIC) score. The ionophore-induced AR was evaluated by the Pisum sativum technique. Sixteen de novo produced proteins were detected in CM. One of these proteins (molecular weight 79 kDa) was detected in extracts from spermatozoa pre-incubated with CM. Sperm survival and motility were maintained in the presence of CM, although results showed a significant decrease in ARIC score (p < 0.05), with respect to controls. The presence of CM significantly decreased sperm fertilizing ability, without affecting sperm survival. These results suggest that the oviductal secretion could contribute to preserve sperm viability and motility, and to prevent a premature response of spermatozoa to AR inducers.
CD73, ecto-5′-nucleotidase, is the key enzyme catalyzing the conversion of extracellular AMP to adenosine that controls vascular permeability and immunosuppression. Also prostatic acid phosphatase (PAP) possesses ecto-5′-nucleotidase/AMPase activity and is present in leukocytes. However, its role related to immune system is unknown. Therefore, we analyzed enzymatic activities and leukocyte subtypes of CD73 and PAP knockouts and generated CD73/PAP double knockout mice to elucidate the contribution of CD73 and PAP to immunological parameters. Enzymatic assays confirmed the ability of recombinant human PAP to hydrolyze [3H]AMP, although at much lower rate than human CD73. Nevertheless, 5′-nucleotidase/AMPase activity in splenocytes and lymphocytes from PAP−/− mice tended to be lower than in wild-type controls, suggesting potential contribution of PAP, along with CD73, into lymphoid AMP metabolism ex vivo. Single knockouts had decreased number of CD4+/CD25+/FoxP3 + regulatory T cells in thymus and CD73/PAP double knockouts exhibited reduced percentages of CD4+ cells in spleen, regulatory T cells in lymph nodes and thymus, and CD4+ and CD8+ cells in blood. These findings suggest that PAP has a synergistic role together with CD73 in the immune system by contributing to the balance of leukocyte subpopulations and especially to the number of regulatory T cells in lymph nodes and thymus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.