Measurement of muscle oxidative metabolism is of interest for monitoring the training status in athletes and the rehabilitation process in patients. Time domain near infrared spectroscopy (TD NIRS) is an optical technique that allows the non-invasive measurement of the hemodynamic parameters in muscular tissue: concentrations of oxy- and deoxy-hemoglobin, total hemoglobin content, and tissue oxygen saturation. In this paper, we present a novel TD NIRS medical device for muscle oxidative metabolism. A custom-printed 3D probe, able to host optical elements for signal acquisition from muscle, was develop for TD NIRS in vivo measurements. The system was widely characterized on solid phantoms and during in vivo protocols on healthy subjects. In particular, we tested the in vivo repeatability of the measurements to quantify the error that we can have by repositioning the probe. Furthermore, we considered a series of acquisitions on different muscles that were not yet previously performed with this custom probe: a venous-arterial cuff occlusion of the arm muscle, a cycling exercise, and an isometric contraction of the vastus lateralis.
The effect of sustained fatigue during an upper limb isometric exercise is presented to investigate a group of healthy subjects with simultaneous time-domain (TD) NIRS and surface electromyography (sEMG) recordings on the deltoid lateralis muscle. The aim of the work was to understand which TD-NIRS parameters can be used as descriptors for sustained muscular fatigue, focusing on the slow phase of this process and using median frequency (MF) computed from sEMG as gold standard measure. It was found that oxygen saturation and deoxy-hemoglobin are slightly better descriptors of sustained fatigue, than oxy-hemoglobin, since they showed a higher correlation with MF, while total-hemoglobin correlation with MF was lower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.