The emerging use of immunotherapies in cancer treatment increases the risk of immunotherapy-related cardiotoxicity. In contrast to conventional chemotherapy, these novel therapies have expanded the forms and presentations of cardiovascular damage to a broad spectrum from asymptomatic changes to fulminant short- and long-term complications in terms of cardiomyopathy, arrythmia, and vascular disease. In cancer patients and, particularly, cancer patients undergoing (immune-)therapy, cardio-oncological monitoring is a complex interplay between pretherapeutic risk assessment, identification of impending cardiotoxicity, and post-therapeutic surveillance. For these purposes, the cardio-oncologist can revert to a broad spectrum of nuclear cardiological diagnostic workup. The most promising commonly used nuclear medicine imaging techniques in relation to immunotherapy will be discussed in this review article with a special focus on the continuous development of highly specific molecular markers and steadily improving methods of image generation. The review closes with an outlook on possible new developments of molecular imaging and advanced image evaluation techniques in this exciting and increasingly growing field of immunotherapy-related cardiotoxicity.
Background New-generation silicon-photomultiplier (SiPM)-based PET/CT systems exhibit an improved lesion detectability and image quality due to a higher detector sensitivity. Consequently, the acquisition time can be reduced while maintaining diagnostic quality. The aim of this study was to determine the lowest 18F-FDG PET acquisition time without loss of diagnostic information and to optimise image reconstruction parameters (image reconstruction algorithm, number of iterations, voxel size, Gaussian filter) by phantom imaging. Moreover, patient data are evaluated to confirm the phantom results. Methods Three phantoms were used: a soft-tissue tumour phantom, a bone-lung tumour phantom, and a resolution phantom. Phantom conditions (lesion sizes from 6.5 mm to 28.8 mm in diameter, lesion activity concentration of 15 kBq/mL, and signal-to-background ratio of 5:1) were derived from patient data. PET data were acquired on an SiPM-based Biograph Vision PET/CT system for 10 min in list-mode format and resampled into time frames from 30 to 300 s in 30-s increments to simulate different acquisition times. Different image reconstructions with varying iterations, voxel sizes, and Gaussian filters were probed. Contrast-to-noise-ratio (CNR), maximum, and peak signal were evaluated using the 10-min acquisition time image as reference. A threshold CNR value ≥ 5 and a maximum (peak) deviation of ± 20% were considered acceptable. 20 patient data sets were evaluated regarding lesion quantification as well as agreement and correlation between reduced and full acquisition time standard uptake values (assessed by Pearson correlation coefficient, intraclass correlation coefficient, Bland–Altman analyses, and Krippendorff’s alpha). Results An acquisition time of 60 s per bed position yielded acceptable detectability and quantification results for clinically relevant phantom lesions ≥ 9.7 mm in diameter using OSEM-TOF or OSEM-TOF+PSF image reconstruction, a 4-mm Gaussian filter, and a 1.65 × 1.65 x 2.00-mm3 or 3.30 × 3.30 x 3.00-mm3 voxel size. Correlation and agreement of patient lesion quantification between full and reduced acquisition times were excellent. Conclusion A threefold reduction in acquisition time is possible. Patients might benefit from more comfortable examinations or reduced radiation exposure, if instead of the acquisition time the applied activity is reduced.
Therapy with 90 Y-labeled fibroblast activation protein inhibitors ( 90 Y-FAPIs) was recently introduced as a novel treatment concept for patients with solid tumors. Lesion and organ-at-risk dosimetry is part of assessing treatment efficacy and safety and requires reliable quantification of tissue uptake. As 90 Y quantification is limited by the low internal positron-electron pair conversion rate, the increased effective sensitivity of digital silicon photomultiplier-based PET/CT systems might increase quantification accuracy and, consequently, allow for dosimetry in 90 Y-FAPI therapy. The aim of this study was to explore the conditions for reliable lesion image quantification in 90 Y-FAPI radionuclide therapy using a digital PET/CT system. Methods: Two tumor phantoms were filled with 90 Y solution using different sphere activity concentrations and a constant signal-to-background ratio of 40. The minimum detectable activity concentration was determined, and its dependence on acquisition time (15 vs. 30 min per bed position) and smoothing levels (all-pass vs. 5-mm gaussian filter) was investigated. Quantification accuracy was evaluated at various activity concentrations to estimate the minimum quantifiable activity concentration using contour-based and oversized volume-of-interest-based quantification approaches. A 620% deviation range between image-derived and true activity concentrations was regarded as acceptable. Tumor dosimetry for 3 patients treated with 90 Y-FAPI is presented to project the phantom results to clinical scenarios. Results: For a lesion size of 40 mm and a clinical acquisition time of 15 min, both minimum detectable and minimum quantifiable activity concentrations were 0.12 MBq/mL. For lesion sizes of greater than or equal to 30 mm, accurate quantification was feasible for detectable lesions. Only for the smallest 10-mm sphere, the minimum detectable and minimum quantifiable activity concentrations differ substantially (0.43 vs. 1.97 MBq/mL). No notable differences between the 2 quantification approaches were observed. For the investigated tumors, absorbed dose estimates with reliable accuracy were achievable. Conclusion: For lesion sizes and activity concentrations that are expected to be observed in patients treated with 90 Y-FAPI, quantification with reasonable accuracy is possible. Further dosimetry studies are needed to thoroughly investigate the efficacy and safety of 90 Y-FAPI therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.